

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CSE

(ARTIFICIAL INTELLIGENCE AND DATA SCIENCE)

R20 Regulation

I, II, & III B.Tech.

Course Structure and Syllabus

Bachelor of Technology DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE VISION

To become an eminent academic institute for academic and research that producing global leaders in science and technology to serve the betterment of mankind.

INSTITUTE MISSION

- **M1.** To provide broad-based education and contemporary knowledge by adopting modern teaching-learning methods.
- **M2.** To inculcate a spirit of research and innovation in students through industrial interactions.
- **M3.** To develop individual's potential to its fullest extent so that they can emerge as gifted leaders in their fields.

DEPARTMENT VISION

To become a well-known department of Computer Science and Engineering producing competent professionals with research and innovation skills, inculcating moral values and societal concerns.

DEPARTMENT MISSION

- **M1.** To educate students to become highly qualified computer engineers with full commitments to professional ethics.
- **M2.** To inculcate a mind of innovative research in the field of computer science and related interdisciplinary areas to provide advanced professional service to the society.
- **M3.** To prepare students with industry ready knowledge base as well as entrepreneurial skills by introducing duly required industry oriented educational program.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1.** Graduates with basic and advanced knowledge in science, mathematics, computer science and allied engineering, capable of analyzing, design and development of solutions for real life problems.
- **PEO2.** Graduates with lifelong learning skills to pursue higher studies, involve in research activities and become an entrepreneur.
- **PEO3.** Graduates with qualities of professional leadership, communication skills, and ethical values to serve the betterment of human needs.

B.Tech - CAD

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO1** Architecture of Computer System: Ability to visualize and articulate computer hardware and software systems for various complex applications.
- **PSO2** Design and develop computer programs: Ability to design and develop computer-based systems in the areas related to algorithms, networking, web design, cloud computing, IoT, data analytics and mobile applications of varying complexity.
- **PSO3** Applications of Computing and Research Ability: Ability to use knowledge in various domains to identify research gaps and hence to provide solution to new ideas and innovations.

PROGRAMME OUTCOMES (PO's)

- PO1 **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2 **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5 **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6 **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7 **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11 **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Page 3 of 147

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CSE (ARTIFICIAL INTELLIGENCE AND DATASCIENCE)

INDUCTION PROGRAM (MANDATORY)	3 WEEKS DURATION
	Physical activity
Induction program for students to	
be offered right at the start of the	 Universal Human Values
first year.	• Literary
	Proficiency Modules
	Lectures by Eminent People
	Visits to local Areas
	 Familiarization to Dept./Branch & Innovations

IB. Tech. – I Semester (CAD)

S.No.	Course Code	Subject	L	T	P	C
1	20HS0830	Algebra and Calculus	3	-	-	3
2	20HS0849	Applied Physics	3	-	-	3
3	20EE0250	Principles of Electrical Engineering	3	-	-	3
4	20CS0501	C Programming and Data Structures		-	-	3
5	20EC0445	Basic Electronics Engineering		-	-	3
6	20HS0851	Applied Physics Lab	-	-	3	1.5
7	20EE0252	Basic Electrical and Electronics Engineering Lab	_	-	3	1.5
8	20CS0502	C Programming and Data Structures Lab	-	-	3	1.5
Contact Periods / Week		15	-	9	19.5	
		Total/Week 24			19.5	

IB. Tech. – II Semester (CAD)

S.No.	Course Code	Subject	L	T	P	C
1	20HS0835	Probability & Statistics	3	-	-	3
2	20HS0802	Applied Chemistry	3	1	-	3
3	20HS0810	Communicative English	3	-	-	3
4	20ME0301	Engineering Graphics	1	-	4	3
5	20CS0503	Digital Logic Design	3	-	-	3
6	20HS0803	Applied Chemistry Lab	-	-	3	1.5
7	20HS0811	Communicative English Lab	-	1	3	1.5
8	20ME0302	Workshop Practice Lab	-	-	3	1.5
	Non-Credit Course					
9	20HS0816	Indian Constitution	2	ı	ı	-
	Contact Periods / Week		15	ı	13	19.5
Contact		Contact I Chous / Week	Total/Week 28		13.3	

II B. Tech. – I Semester (CAD)

S.No	Course Code	Subject	L	T	P	C	
1	20HS0845	Mathematical and Statistical Methods	3	-	-	3	
2	20CS0504	Computer Organization & Architecture	3	-	-	3	
3	20CS0505	Database Management Systems	3	-	-	3	
4	20CS0507	Operating Systems	3	-	-	3	
5	20CS0511	Python Programming		-	-	3	
6	20HS0864	Human Values and Professional Ethics	3	-	-	3	
7	20CS0508	Database Management Systems Lab	-	-	3	1.5	
8	20CS0510	20CS0510 Operating Systems Lab		-	3	1.5	
9	20CS0514	Python Programming Lab	-	-	3	1.5	
	Skill Oriented Course						
10	20CS0546	Visual Effects-VFX	1	-	2	2	
	Contact Periods / Week		19	-	11	24.5	
			Total/Week 30			24.5	

II B. Tech. – II Semester (CAD)

S.No	Course Code	Subject	L	T	P	C	
1	20HS0836	Discrete Mathematics	3	-	-	3	
2	20CS0901	Fundamentals of Artificial Intelligence	3	-	-	3	
3	20CS0506	Object Oriented Programming through Java	3	-	-	3	
4	20CS0513	Computer Networks	3	-	-	3	
5	20HS0812	Managerial Economics & Financial Analysis		-	-	3	
6	20CS0902	Artificial Intelligence Lab		-	3	1.5	
7	20CS0509	Object Oriented Programming through Java Lab		-	3	1.5	
8	20CS0515	Linux Programming Lab	-	-	3	1.5	
		Skill Oriented Course					
9	20CS0547	Animation Design	1	-	2	2	
Ma	Mandatory Internship at the end of the II year (to be evaluated in III Year I Sem)						
	Contact Periods / Week		16	•	11	21.5	
			Total/Week 27			41.5	

III B.Tech.-I Semester (CAD)

S.No.	Course Code	Subject	L	T	P	C
1	20CS1101	Introduction to Data Science		-	-	3
2	20CS0517	Data Warehousing and Data Mining		-	-	3
3	20CS0518	Software Engineering	3	-	-	3
		Professional Elective course (PEC) –I	•			
	20CS0537	Cloud Computing				
	20CS1109	Neural Networks	3	-	-	3
4	20CS1110	User Interface Technologies				
		Open Elective (OE) – I	•			
	20CE0170	Fundamentals of Civil Engineering				
	20EE0227	Generation of Energy from Waste				
5	20ME0322	Non-Conventional Energy Resources	3	-	-	3
3	20EC0451	Introduction to Communication Systems				
	20HS0813	Management Science				
6	20CS0519	Object Oriented Analysis and Design Lab	-	-	3	1.5
7	20CS0520	Data Warehousing and Data Mining Lab	-	-	3	1.5
		Skill advanced course / soft skill course	•			
8	20CS0548	App Design for Android	1	-	2	2
	Non-Credit Course					
9	20HS0817	Essence of Indian Traditional Knowledge	2	-	-	-
10	20CS1102	Internship	-	-	-	1.5
		Contact Davis do Woods	18	-	8	21.5
		Contact Periods/Week	Tota	l/Wee	ek 26	

III B.Tech.-II Semester (CAD)

S.No.	Course Code	Subject		Т	P	C
1	20CS1103	Fundamentals of Machine Learning			-	3
2	20CS1104	R Programming for Data Science		-	-	3
3	20CS0523	Design and Analysis of Algorithms		-	-	3
		Professional Elective course (PEC) –II				
	20CS0533	Cyber Security				
4	20CS0545	Blockchain Technology	3	-	-	3
	20CS1111	Big Data Analytics				
		Open Elective (OE)– II				
	20CE0147	Fundamentals of Urban Planning				
	20EE0235	Industrial Instrumentation		-		
5	20ME0354	General Mechanical Engineering	3		-	3
	20EC0452	Elements of Embedded Systems				
	20HS0814	Intellectual Property Rights				
6	20CS1105	Fundamentals of Machine Learning Lab		-	3	1.5
7	20CS1106	R Programming Lab	-	-	3	1.5
8	20CS0525	Design and Analysis of Algorithms Lab		-	3	1.5
		Skill advanced course / soft skill course				
9	20HS0859	English for Corporate Communication Skills	1	-	2	2
	Non-Credit Course					
10	10 20HS0801 Environmental Science		2	-	-	-
Man	datory Internsh	ip at the end of the III year (to be evaluated	d in I	V Ye	ear I S	Sem)
	Contact Periods/Week		18	-	11	
			Total/Week 29		21.5	

I B.Tech. - I Sem.

L	T	P	C
3	-	-	3

(20HS0830) ALGEBRA AND CALCULUS

COURSE OBJECTIVES

The objectives of this course:

- 1. To illuminate the students in the concepts of calculus and linear algebra.
- 2. To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.
- 3. To estimate and check answers to mathematical problems in order to determine reasonableness, identify alternatives, and select optimal results.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- 2. Utilize mean value theorems to real life problems.
- 3. Familiarize with functions of several variables which is useful in optimization.
- 4. Learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems.
- 5. Interpret the physical meaning of different operators such as gradient, curl and divergence.
- 6. Apply Fundamental Theorem of Line Integrals, Green's Theorem, Stokes' Theorem, or Divergence Theorem to evaluate integrals.

UNIT - I

Matrices: Rank of a matrix by echelon form, solutions of system of homogeneous and non-homogeneous linear equations. Eigen values and Eigen vectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem.

UNIT - II

Mean value theorems: Rolle's theorem-Lagrange's Mean value theorem-Taylor's and Maclaurin's theorems (without proof);

Partial Differentiation: Chain rule, Total derivatives, Jacobians, functional dependence, Maxima and Minima of functions of two variables, method of Lagrange multipliers with three variables only.

UNIT - III

Integral Calculus: Evaluation of definite and improper integrals (single variable), Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Evaluation of Triple integrals (Cartesian).

UNIT - IV

Vector differentiation: Scalar and vector point functions, vector operator del, del applies to scalar point functions- Gradient, del applied to vector point functions-Divergence and Curl, vector identities.

UNIT - V

Vector integration: Line integral-circulation-work done, surface and volume integrals. **Integral theorems:** Green's theorem in the plane (without proof), Stoke's theorem (without proof), Divergence theorem (without proof) and applications of these theorems.

TEXT BOOKS

- 1. Grewal B S, *Higher Engineering Mathematics*, 44thEdition, Khanna Publishers, 2017.
- 2. Ramana B V, Higher Engineering Mathematics, Mc Graw Hill Education, 2010.

REFERENCES

- 1. Rukmangadachari. E & Keshava Reddy E, *Engineering Mathematics*, Volume- I, II & III, Pearson Publishers, 2010.
- 2. Satyanarayana Bh, Pradeep Kumar T.V & Srinivasulu D, *Linear Algebra and Vector Calculus*, Studera Press, New Delhi, 2017, ISBN: 978-81-930333-8-8.
- 3. Iyengar T.K.V, Krishna Gandhi B, Ranganatham S & Prasad M.V.S.S.N, *Engineering Mathematics*, Volume-I,II & III, 12thEdition, S.Chand publication, 2014.

Page 9 of 147

I B.Tech. – I Sem.

L	T	P	С
3	-	-	3

(20HS0849) APPLIED PHYSICS

COURSE OBJECTIVES

The objectives of this course:

- 1. To identify the importance of optical phenomenon i.e. interference and diffraction related to its engineering applications.
- 2. To impart knowledge in basic concepts of free electron theory, energy bands in solids and propagation of Electromagnetic waves.
- 3. To recognize the basic concepts related to the properties of Lasers and Optical Fibers.
- 4. To understand key points, formation and importance of semiconductors in the functioning of electronic devices.
- 5. To understand the fundamental concepts of Superconductivity and Nano Science & Technology.

COURSE OUTCOMES (COs)

On successful completion of this course, student will be able to

- 1. Analyze the differences between interference and diffraction with applications.
- 2. Explain concepts of free electron theory and energy bands in solids and asses the EM wave propagation in non-conducting medium by using Maxwell Equations.
- 3. Explain the basic principles and properties of Lasers and Optical Fibers.
- 4. Identify the applications of semiconductors in electronic devices
- 5. Explain the basic properties and applications of superconductors in various fields.
- 6. Illustrate methods for synthesis and characterization of nanomaterials and apply basic principles of nanomaterials in various engineering applications.

UNIT-I:WAVE OPTICS

Interference - Principle of Superposition-Interference of light- Conditions for sustained Interference - Interference in thin films (reflected light)-Newton's Rings-Determination of Wavelength of light- Engineering Applications of interference.

Diffraction – Introduction- Fraunhofer Diffraction-Single Slit – Double Slit -Diffraction Grating – Grating Spectrum -Determination of Wavelength of Light - Engineering Applications of diffraction.

UNIT-II: ELECTRON THEORY OF METALS & ELECTROMAGNETIC THEORY

Electron Theory of Metals : Classical free electron theory: postulates- drawbacks- Quantum free electron theory. – Fermi Dirac distribution–Effective mass of electron- sources of electrical resistance- Energy bands in solids - Types of electronic materials: metals, semiconductors and insulators.

Electromagnetic Theory: Divergence and Curl of Electric and Magnetic Fields- Gauss' theorem for divergence and Stokes' theorem for curl- Maxwell's Equations (Quantitative)- Electromagnetic wave propagation (Non-conducting medium).

UNIT-III: LASERS AND FIBER OPTICS

Lasers: Introduction - Characteristics of Laser - Spontaneous and Stimulated emission of radiation - Einstein's coefficients - Population inversion - Pumping Mechanisms - He-Ne laser, Nd-YAG laser - Applications of laser.

Fiber Optics: Introduction to Optical Fibers-Total Internal Reflection-Construction of optical fibers, Critical angle of propagation-Acceptance angle-Numerical Aperture-Classification of fibers based on Refractive index profile & modes —Propagation of electromagnetic wave through optical fiber- Block Diagram of Fiber optic Communication system —Applications.

UNIT-IV: SEMICONDUCTORS

Intrinsic semiconductors- Carrier concentration (qualitative) - Fermi level - Energy Band Structure - Electrical conductivity- Energy band gap - Extrinsic semiconductors- P-type & N-type - Carrier concentration (qualitative) - Fermi level - Energy Band Structure- Life time of charge carriers- Carrier generation and recombination - Drift and Diffusion processes - Einstein's Relation - Hall Effect and it's applications - Theory of p -n junction - Construction and working of LED and Photo Diode

UNIT-V: SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

Superconductivity: Introduction – Meissner effect - Properties of superconductors Type I and type II superconductors- ac and dc Josephson effects -BCS theory (qualitative) – Applications of superconductors.

Physics of Nanomaterials : Introduction, Nanoscience and Nanotechnology – Surface area to volume ratio and Quantum confinement- Classifications of Nanomaterials – Properties of nanomaterials: Mechanical, Magnetic, Optical - Synthesis of nanomaterials- Top Down Process- Ball Milling; Bottom Up Process: Sol-Gel method—Applications of nanomaterials.

TEXT BOOKS

- 1. B.E.A. Saleh and M.C. Tech, *Fundamentals of Photonics*, John Wiley & Sons, 2nd ed.2012.
- 2. K.Thyagarajan ,*Engineering Physics* , Mc Graw Hill Education Private Ltd, New Delhi.2nd ed.2019.

REFERENCES

- 1. M.N.Avadhanulu, P.G.Kshirsagar& TVS Arun Murthy *A Text book of Engineering Physics*, S.Chand Publications, 11th Edition, 2019.
- 2. J. Singh, *Semiconductor optoelectronics: Physics and Technology*, McGraw-Hill Inc. 2nd 1995.
- 3. S.M. Sze, Semiconductor Devices: Physics and Technology, Wiley, 2rd ed. 2015.
- 4. P. Bhattacharya, *Semiconductor Optoelectronic devices*, Prentice Hall of India , 2nd ed.1997.

Page 11 of 147

- 5. R. Fitzpdricle , *Maxwell's equations and the principles of Electromagnetism*, Infinity Science Press, $1^{\rm st}$ ed.2010.
- 6. John David Jackson , *Classical Electrodynamics*. Wiley, 3rd ed. 2007.

I B.Tech. – I Sem.

L	T	P	C
3	_	-	3

(20EE0250) PRINCIPLES OF ELECTRICAL ENGINEERING

COURSE OBJECTIVES

The objectives of this course:

- 1. To understand the nature of different circuit elements, fundamental laws and network theorems.
- 2. Understand the operation of dc machines and single phase transformers.
- 3. To learn the different types measuring instruments

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Apply concepts of KVL/KCL in solving DC circuits
- 2. Apply the network theorems to simple circuits
- 3. Analyze single phase AC circuits consisting of series and RL-RC-RLC combination
- 4. Illustrate the principles and operation of DC Generators & Motors
- 5. Understand the principles and operation of Transformers &Induction Motor
- 6. Understand the different types of instruments

UNIT- I

DC Circuits: Electrical circuit elements (R,L and C),voltage and current sources, Ohm's law, Kirchoff's laws, analysis of circuits with dc excitation (series, parallel and series-parallel). Superposition, Thevenin's, Norton's and Maximum Power transfer Theorems.

UNIT-II

AC Circuits: Representation of sinusoidal waveforms, peak ,average and rms values, form factor phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL ,RC, RLC combinations (series and parallel)

UNIT- III

DC Machines: Construction details of DC Machine, principle and operation of DC generator, EMF equation, Types of generators, OCC of DC generator, Operation of DC motor, back emf, torque equation. Speed control methods.

UNIT-IV

AC Machines: Construction and working principle of Single Phase transformer, OC and SC tests, losses in transformers, Regulation and efficiency, Construction & working principle of 3 – phase alternators and three phase induction motor. Regulation of alternator by Synchronous Impedance method.

UNIT-V

Measuring Instruments: Operating principles, essential features of measuring instruments, Moving coil permanent magnet (PMMC) and moving Iron instruments (Voltmeters and Ammeters)- Extension of range of the meters.

TEXT BOOKS

- 1. D. P. Kothari and I. J. Nagrath, *Basic Electrical Engineering*, Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, Basic Electrical Engineering, McGraw Hill, 2009.
- 3. Soni, Gupta, Bhatnagar, A Course in Electrical Power, DhanpatRai & Sons.

REFERENCES

- 1. L. S. Bobrow, *Fundamentals of Electrical Engineering*, Oxford University Press,2011.
- 2. E. Hughes, *Electrical and Electronics Technology*, Pearson, 2010.
- 3. B.L. Thareja, *Basic* electrical *Engineering* (Vol. 1).

Page 14 of 147

I B.Tech. – I Sem.

L	T	P	C
3	-	-	3

(20CS0501) C PROGRAMMING AND DATA STRUCTURES (Common to CSE & CIVIL)

COURSE OBJECTIVES

The objectives of this course:

- 1. Teach the syntax and semantics of a C Programming language
- 2. Demonstrate the use of Control structures of C Programming language
- 3. Illustrate the methodology for solving Computational problems
- 4. Explain the approach to algorithm analysis
- 5. Introduce different data structures for solving the problems

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Recognize the programming elements of C language
- 2. Implement the appropriate statements for solving the problem
- 3. Apply modular approach for solving the problem utilizing arrays, functions and strings
- 4. Solve problems using pointers, structures and unions
- 5. Understand the types of data structures along with the definition, representation and applications of stacks, queues and linked list.
- 6. Describe the searching and sorting techniques used in data structures.

UNIT-I

Introduction to C Language - C Language Elements, Variable Declarations and Data Types, General Form of a C Program, Input and Output Statements, Operators, Expressions, Precedence and Associativity, Type Conversions.

Statements: Decision Statements, Loop Control Statements, break, continue, goto statement.

UNIT-II

Arrays - Declaring and Referencing Arrays, Array Subscripts, Multidimensional Arrays. **Functions** - Library Functions, Communications among Functions, Using Array Elements as Function Arguments, Scope, Storage Classes, Type Qualifiers, Recursion, Preprocessor Commands.

Strings - String Basics, String Library Functions

UNIT-III

Pointers - Pointer Declaration, Pointers and Arrays, Array of Pointers, Pointers to Pointers, Void Pointers, Memory Allocation Functions, Pointer to Functions, Pointers and Strings.

Structure and Union – Declaration and Initialization of Structures, Structure within Structure, Array of Structures, Pointer to Structure, Structure and Functions, typedef, Bit Fields, Enumerated Data Type, Union, Union of Structures.

UNIT-IV

Data Structures - Overview of Data Structure, Types of data structures, Stacks: Introduction- Definition-Representation of Stack-Operations on Stacks- Applications of Stacks. Queues: Introduction, Definition- Representations of Queues- Various Queue Structures- Applications of Queues.

Linked List -Single linked list, Circular linked list, Double linked list, Circular Double linked list, Applications of linked lists.

UNIT-V

Searching & Sorting:

Linear Search, Binary Search, Exchange Sort, Insertion Sort, Selection Sort, Merge Sort, Quick Sort.

TEXT BOOKS

- 1. J.R. Hanly, Ashok N. Kamthane and A.Ananda Rao, *Programming in C and Data Structures*, Pearson Education.
- 2. B.A. Forouzan and R.F. Gilberg, *C Programming & Data Structures*, Third Edition, Cengage Learning.

REFERENCES

- 1. Stephen G. Kochan, *Programming in C*, III Edition, Pearson Education.
- 2. J.A. Jones & K. Harrow, C Programming with problem solving, Dreamtech Press.
- 2. Dr. N.B. Venkateswarlu, Dr. E.V .Prasad, S. Chand, *C and Data Structures*, a snapshot oriented treatise with live engineering examples.
- 3. E. Balaguruswamy, C and Data Structures, Tata McGraw Hill.
- 4. A.M. Tanenbaum, Y. Langsam, and M.J. Augenstein , Data Structures using C , Pearson
- 5. Education / PHI, Eighth Edition.

Page 17 of 147

I B.Tech. – I Sem.

L	T	P	C
3	-	-	3

(20EC0445) BASIC ELECTRONICS ENGINEERING

COURSE OBJECTIVES

The objectives of this course:

- 1. To understand the basics of Semiconductor materials, characteristics and applications of P-N junction diode.
- 2. To familiarize with the working principle of BJT, JFET and MOSFET and also biasing of the transistors for design of Amplifier circuits.
- 3. To analyze and design various electronic circuits using PN Junction diode, BJT, JFET and MOSFET.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Demonstrate the characteristics of PN Junction Diode, Rectifiers, Filters, BJT, JFET and MOSFET.
- 2. Analyze numerical and analytical problems in Rectifiers, Filters, and Transistor biasing circuits.
- 3. Design and develop electronic circuits such as Rectifiers with and without filters and Transistor biasing circuits.
- 4. Solve engineering problems and arrive at solutions relating to electronic devices and circuits.
- 5. Identify a suitable semiconductor device and transistor for any given specification.
- 6. Select suitable technique for Device modeling.

UNIT-I

Basics of Semiconductor: Conductors, Insulators, and Semiconductors- crystal structure, Energy band diagrams, valence band, conduction band, and band gap; intrinsic, and extrinsic (p-type and n-type) semiconductors, drift and diffusion currents — expression only, mass action law, charge neutrality in semiconductor.

UNIT-II

P-N Junction diode: Open circuited PN Junction, Forward and Reverse Bias of PN Junction, V-I Characteristics, Quantitative Theory of PN Diode Currents, Temperature dependence of the V-I characteristic, Diode Resistances, Diode Capacitances, Applications, Breakdown Mechanisms- avalanche and Zener breakdown, Zener diode – V-I characteristics and Applications, Zener Diode as Voltage Regulator.

B.Tech - CAD

UNIT-III

Rectifiers: Definition and Types, Half-wave Rectifier, Full-wave Rectifier – Derivations for Vdc, Vac, ripple factor, efficiency and PIV, Comparison of Rectifiers, Filter - Definition and Types, Inductor Filter, Capacitor Filter, L-section Filter, CLC or π - section Filter-Derivation for Ripple factor, Comparison of various types of filters.

UNIT-IV

Bipolar Junction Transistor(BJT): Construction, Operation, Transistor configurations, Transistor characteristics- CB, CE and CC, Transistor as an Amplifier, Need for Transistor biasing, operating point, Load line analysis, Stability Factor, Biasing methods- Types, Selfbias, Bias compensation.

UNIT- V

Field Effect Transistor (FET): Classification, JFET-Construction, Working, Characteristics and parameters, MOSFET-Types, Construction, Working, Characteristics, Comparison of BJT and FET, Biasing methods- Types, operating point, Voltage Divider Bias.

TEXT BOOKS

- 1. J. Millman, C. Halkias, *Electronic Devices and Circuits*, Tata Mc-Graw Hill, 4thEdition, 2010.
- 2. S.Salivahanan, N.Suresh Kumar, *Electronic Devices and Circuits*, Third Edition, McGraw Hill Education (India) Private Limited, 2012.

REFERENCES

- 1. C. Halkies, C.D.Parikh, *Integrated Electronics—Jacob Millman*, Tata Mc-Graw Hill, 2009.
- 2. Sedra and Smith, *Micro Electronic Circuits*, Fourth Edition, Oxford University Press, 2002
- 3. Boylestead and Nashelsky, *Electronic Devices and Circuits Theory*, 9/e, PHI, 2006.

Page 19 of 147

I B.Tech – I Sem.

L	Т	P	C
-	-	3	1.5

(20HS0851) APPLIED PHYSICS LAB

COURSE OBJECTIVES

The objectives of this course:

- 1. To explore the application of Interference and Diffraction by doing concerned experiments.
- 2. Elucidate the concepts of Physics through involvement in the experiment by applying theoretical knowledge.
- 3. To understand the concept of Rigidity modulus, energy gap and B-H curve.
- 4. Develop an ability to apply the knowledge of physics experiments in the later studies.
- 5. Recognize the significance of Laser by studying its characteristics and its application in finding the particle size.

COURSE OUTCOMES (COs)

On successful completion of this course, student will be able to

- 1. Operate various optical instruments.
- 2. Estimate wavelength of laser and particles size using laser.
- 3. Plot the intensity of the magnetic field of induction along the axis of circular coil carrying current with distance.
- 4. Evaluate the acceptance angle of an optical fiber and numerical aperture.
- 5. Determine energy loss by B-H curve.
- 6. Evaluate rigidity modulus of a given wire.

Suggested list of experiments from the following: (Perform any TEN experiments from the following)

- 1. Determination of wavelengths of various colors of Mercury vapor lamp using Diffraction Grating Normal Incidence method.
- 2. Determination of Dispersive power of prism.
- 3. Rigidity Modulus Torsional Pendulum
- 4. Determination of thickness of thin object by wedge method.
- 5. Determination of radius of curvature of Plano convex lens Newton's Rings.
- 6. Determination of wavelength of a given laser source by using diffraction grating.
- 7. Determination of particle size (Lycopodium particles deposited on glass plates) using Laser source.
- 8. Determination of energy gap of a semiconductor using p n junction diode.
- 9. B- H curve.

B.Tech - CAD

- 10. Magnetic field along the axis of current carrying coil Stewart & Gee's Method.
- 11. Determination of frequency of tuning fork Melde's Apparatus.
- 12. Determination of Spring constant Coupled Oscillator.
- 13. Determination of di electric constant of dielectric material using charging and discharging of capacitor.
- 14. Determination of Numerical Aperture of an Optical fiber.
- 15. Measurement of resistance with varying temperature –Thermistor.

REFERENCES

- 1. S. Balasubramanian, M.N. Srinivasan *A Text book of Practical Physics*, S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University.

I B.Tech. – I Sem.

L	T	P	C
_	-	3	1.5

(20EE0252) BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB

COURSE OBJECTIVES

The objectives of this course:

- 1. To enhance the student with knowledge on electrical and electronic equipment's.
- 2. Students can gain practical knowledge about network theorems.
- 3. To enhance the student with practical knowledge about characteristics of BJT.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Students will understand all the fundamental components about electrical engineering and electronics engineering.
- 2. Make electrical connections by wires of appropriate ratings.
- 3. Understand the usage of common electrical and electronic measuring instruments.
- 4. Understand the basic characteristics of transformers and electrical machines.

PART - A ELECTRICAL LAB

- 1. Verification of Superposition Theorem.
- 2. Verification of Thevenin's Theorem.
- 3. Open circuit characteristics of dc shunt generator.
- 4. Swinburne's Test on DC Shunt Machine
- 5. Brake Test on DC Shunt Motor.
- 6. OC & SC Tests on Single-Phase Transformer

PART -B ELECTRONICS LAB

- 1. P-N Junction Diode and Zener Diode Volt-Ampere Characteristics.
- 2. Bipolar Junction Transistor in CB Configuration-Input and Output Characteristics, Computation of α .
- 3. Half-Wave Rectifier- a) Without Filter b) With Capacitor Filter.
- 4. Full-Wave Rectifier- a) Without Filter b) With Capacitor Filter.
- 5. Bipolar Junction Transistor in CE Configuration-Input and Output Characteristics, Computation of β .
- 7. Verification of Logic Gates- AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.

I B.Tech. – I Sem.

L	T	P	C
-	-	3	1.5

(20CS0502) C PROGRAMMING and DATA STRUCTURES LAB (Common to CSE & CIVIL)

COURSE OBJECTIVES

The objectives of this course:

- 1. Explain basic constructs of C language
- 2. Explain problem solving techniques
- 3. Develop applications in C using strings, pointers, functions, structures
- 4. Explain the different operations that can be performed on data structures
- 5. Introduce the different search and sorting algorithms

COURSE OUTCOMES (COs):

On Successful completion of this course, the student will be able to

- 1. Read, understand and trace the execution of programs written in C language
- 2. Develop C programs for simple applications making use of basic constructs, arrays and strings
- 3. Develop C programs involving functions, recursion, pointers, and structures
- 4. Select the data structure appropriate for solving the problem
- 5. Illustrate the working of stack and queue
- 6. Implement searching and sorting algorithms

LIST OF EXPERIMENTS:

- 1. Write a C program, which takes two integer operands and one operator form the user, performs the operation and then prints the result. (Consider the operators +,-,*,/,% and use Switch Statement)
- 2. a) Write a C program to find the sum of individual digits of a positive integer.
 - b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- 3. a) Write a C program to calculate the following Sum: Sum=1-x2/2! +x4/4! -x6/6! +x8/8! -x10/10!
 - b) Write a C program to find the roots of a quadratic equation.
- 4. a) Write a C program to determine if the given string is a palindrome or not
 - b) Write a C program to determine whether the given number is Armstrong number or not.
- 5. a) Write a C program to generate Pascal's triangle.
 - b) Write a C program to construct a pyramid of numbers.

- 6. a) Write a C program to find both the larges and smallest number in a list of integers.
 - b) Write a C program that uses functions to perform the following:
 - i) Addition of Two Matrices
 - ii) Multiplication of Two Matrices
- 7. Write C programs that use both recursive and non-recursive functions
 - i) To find the factorial of a given integer.
 - ii) To find the GCD (greatest common divisor) of two given integers.
 - iii) To solve Towers of Hanoi problem.
- 8. Write a C program to swap(exchange) values of two integer variables using pointers
- 9. Write a C program that uses functions to perform the following operations:
 - a) To insert a sub-string in to given main string from a given position.
 - b) To delete n Characters from a given position in a given string.
- 10. a) Write a C program to check whether the entered string is palindrome or not.
 - b) Write a C program to read student roll no, name and marks in six subjects for n number of students and give class of each student.
- 11. Write a C programs that implement stack (its operations) using Arrays
- 12. Write a C programs that implement queue (its operations) using Arrays
- 13. Write a C program that uses functions to perform the following operations on singly linked list.
 - i) Creation ii) Insertion iii) Deletion iv) Traversal
- 14. Write a C program that uses functions to perform the following operations on doubly linked list:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal in both ways
- 15. a) Write a C program to perform Linear Search on the elements of a given array.
 - b) Write a C program to perform Binary Search on the elements of a given array.
- 16. a) Write a C program to sort the elements using Bubble sort.
 - b) Write a C program to sort the elements using Insertion sort.

TEXT BOOKS

- 1. J.R. Hanly, Ashok N. Kamthane and A.Ananda Rao, *Programming in C and Data Structures*, Pearson Education.
- 2. B.A. Forouzan and R.F. Gilberg, *C Programming & Data Structures*, Third Edition, C engage Learning.

REFERENCES

- 1. P. Padmanabham ,*C programming and Data Structures*, Third Edition, BS Publications
- 2. E Balaguruswamy , *C and Data Structures*, TMH publications.

I B.Tech. - II Sem.

L	T	P	C
3	-	-	3

(20HS0835) PROBABILITY & STATISTICS

COURSE OBJECTIVES

The objectives of this course:

- 1. To train the students thoroughly in Mathematical concepts fundamentals of probability, test of hypothesis, Test of significance.
- 2. To prepare students for lifelong learning and successful careers using mathematical concepts of probability, test of hypothesis, Test of significance.
- 3. To develop the skill pertinent to the practice of the mathematical concepts including the Student abilities to formulate and modeling the problems, to think creatively and to synthesize information.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. A good understanding of the laws of probability axioms and rules.
- 2. Understanding of moments of discrete and continuous random variables as well as be familiar with common named discrete and continuous random variables.
- 3. Calculate and interpret the correlation between two variables.
- 4. Calculate the simple linear regression equation for a set of data.
- 5. Have acquired ability to participate effectively in group discussions.
- 6. Have developed ability in writing in various contexts.
- 7. Have acquired a proper level of competence for employability.

UNIT - I

Probability: Sample spaces and Events, Definition of probability, Addition theorem, Conditional probability, Independence, Multiplication theorem, Baye's theorem.

Random variables: Discrete and Continuous random variables- Probability distribution functions and their properties- Expectation of Discrete and Continuous Random Variables.

UNIT-II

Probability distributions: Binomial, Poisson and Normal Distributions -Mean and Variance of Binomial, Poisson and Normal distributions, related problems.

UNIT - III

Basic statistics: Measures of Central tendency (Mean, Median & Mode), Moments, Skewness and Kurtosis. Correlation and regression – Rank correlation.

UNIT - IV

Applied statistics:

Curve fitting: Curve fitting by the method of least squares- fitting a straight line, second degree polynomial and more general curves (Exponential & Power curves).

Test of Hypothesis: Large sample tests for single proportion, difference of proportions, single mean, difference of means.

UNIT-V

Tests of significance: Small sample tests: t-test for single mean, difference of means, F-test, Chi-square test for goodness of fit and independence of attributes.

TEXT BOOKS

- 1. Grewal B S, *Higher Engineering Mathematics*, 44thedition, Khanna Publishers, 2017.
- 2. Iyengar T.K.V, Krishna Gandhi B, Ranganatham S & Prasad M.V.S.S.N, *Probability & Statistics*, S.Chand publications, 2018.

REFERENCES

- 1. Gupta S.P, Statistical methods, S.Chand publications, 2011.
- 2. Rukmangadachari E & Keshava Reddy E, *Probability & Statistics*, Pearson Publisher, 2015.
- 3. Shankar Rao G, *Probability & Statistics for Science and Engineering*, Universities Press, 2011

Page 26 of 147

I B.Tech. – II Sem.

L	T	P	C
3	-	-	3

(20HS0802) APPLIED CHEMISTRY

COURSE OBJECTIVES

The objectives of this course:

- 1. To familiarize engineering chemistry and its applications.
- 2. To train the concepts of molecular structures and bonding.
- 3. To understand the physical and mechanical properties of polymers helps in selecting suitable materials for different purpose.
- 4. Learn the principles of spectroscopies to analyse them.
- 5. Be exposed to the importance of nano and engineering materials used in their daily life and Industry.

COURSE OUTCOMES(COs)

At the end of the course student will be able to:

- 1. Apply Nernst equation for calculating electrode and cell potentials
- 2. Illustrate the molecular orbital energy level diagram of different molecular species
- 3. Explain the different types of polymers and their synthesis.
- 4. Synthesize of plastics, elastomers, conducting polymers and their applications in our daily life
- 5. Comprehend the principles and applications of spectroscopies.
- 6. Acquire spotlight to the nanomaterials and basic engineering materials used in academics, industry and daily life.

UNIT - I Electrochemistry and Applications

Introduction to electrochemistry, Electrochemical cell - Nernst equation, Cell potential calculations and Numerical problems - Potentiometry - Potentiometric Titrations (Redox Titrations), Conductometric Titrations (Acid-Base titrations), Photovoltaic cell working and its applications, Photogalvanic cells Electrochemical sensors.

Primary cells – Zinc-air battery, Secondary cells – Lead acid, NICAD batteries, and Lithium ion cells (Rechargeable). Fuel cells - Hydrogen-Oxygen, Methanol-Oxygen fuel cell-Hydrogen-Oxygen, Methanol-Oxygen fuel cell - working of the cells and application.

UNIT - II Structure and Bonding Models

Planck's Quantum Theory, Dual Nature of matter - Schrodinger Equation, Significance of Ψ and Ψ^2 , Molecular Orbital Theory – Bonding in Homo and Hetero nuclear Diatomic molecules - Calculation of Bond Order. Energy level diagrams of O2, F2, N2 and CO, etc. π -molecular orbital's Energy Level Diagram of Butadiene and Benzene. Crystal Field Theory – Salient features – Splitting in Octahedral and Tetrahedral geometry, Magnetic properties and Color.

UNIT - III Polymer Chemistry

Introduction to Polymers, Functionality of Monomers, Nomenclature of Polymers. Chain growth and Step growth Polymerization, Co-ordination Polymerization, Co-Polymerization with specific examples and mechanisms of polymer formation

Plastics - Thermoplastics and Thermosetting, Preparation, Properties and Applications of – Bakelite, Nylon-6,6, Carbon fibers.

Elastomers: Preparation, Properties and applications of Buna-S, Buna-N. Preparation, Properties and applications of Conducting Polymers – Classification, Synthesis and applications of polyacetylene, polyaniline.

UNIT - IV Instrumental Methods and Applications

Regions of Electromagnetic Spectrum, Absorption of radiation: Beer-Lambert's Law., UV-spectroscopy, Infra red Spectroscopy (IR) and Atomic absorption Spectroscopy (AAS).

Chromatography Techniques: Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC), Thin layer chromatography(TLC), Separation of Gaseous mixtures and Liquid mixtures.

UNIT - V Modern Engineering Materials

Semiconducting and Super Conducting materials- basic concept, band diagrams for conductors, semiconductors and insulators, effect of doping on band structures.

Electrical Insulators or Dielectric materials: Definition and classification, Characteristics of electrical insulators and applications of electrical Insulating materials. Concepts and terms of Supra molecular chemistry, Complementarity, Basic Lock and Key principle, examples of Supramolecules, Applications of Supra molecules (Sensors, Catalysts, Gas storage, Medical and Molecular switches).

Nano Chemistry: Introduction, Classification, Properties of Nanomaterials. Fullerenes, Carbon Nanotubes.

TEXT BOOKS

- 1. Jain and Jain, Engineering Chemistry, 16 Ed., Dhanpat Rai Publishers, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' *Physical Chemistry*, 10 Ed., Oxford University Press, 2010.

REFERENCES

- 1. GV Subba Reddy, KN Jayaveera and C. Ramachandraiah, *Engineering Chemistry*, McGraw Hill Higher Education,, New Delhi 2019.
- 2. K Sesha Maheswaramma and Mridula Chugh, Engineering Chemistry, 1 Ed., Pearson India Education Services Pvt. Ltd, 2016.
- 3. Dr. S.S. Dara and Dr S.S Umare, A Text book of Engineering Chemistry, 1 Ed., Chand & Company Ltd., 2000
- 4. D. J. Shaw, Introduction to Colloids and Surface Chemistry, 4 Ed., Butterworth-Heineman, 2013.

I B.Tech. - II Sem.

(20HS0810) COMMUNICATIVE ENGLISH (Common to CSE & CIVIL)

COURSE OBJECTIVES

The objectives of this course:

- 1. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers.
- 2. Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- 3. Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations.
- 4. Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information.
- 5. Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. To understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information.
- 2. To ask and answer general questions on familiar topics and introduce oneself/others.
- 3. To employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information.
- 4. To recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs.
- 5. To form sentences using proper grammatical structures and correct word forms.
- 6. To use effective sentence structure for their professional activities.

UNIT – I

Part 1

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Writing:** Beginnings and endings of paragraphs - introducing the topic; Letter writing. **Grammar and Vocabulary:** Parts of speech, Function words, Content words; Tenses. **Soft Skills:** Attitude is Everything; Positive attitude Positive thinking- thought provoking ideas – creative thinking.

Part 2

Half a Rupee Worth by R K Narayan from Engage with English.

UNIT - II

Part 1

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/ small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Mechanics of writing –punctuations. **Grammar and Vocabulary:** Voice; Cohesive devices; Articles. Types of sentences – Simple, Complex, and Compound.

Soft skills: The factors of human mindset; self-confidence- self-belief, self-learning – self motivation.

Part 2

The Thakur's Well by Premchand from Paths to Skills in English

UNIT – III

Part 1

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. **Writing:** Summarizing Report Writing. **Grammar and Vocabulary:** Subject-verb agreement; If- clauses; Direct and Indirect speech. wh-questions.

Soft skills: Emotional intelligence; Work efficiency- peace of mind- Broad nature in ideashaving patience in multiple ways.

Part 2

I am not that Woman by Kishwar Naheed.

UNIT – IV

Part 1

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** conversational English in academic contexts (formal and informal). **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Information transfer **Grammar and Vocabulary:** Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of synonyms and antonyms.

Soft skills: Time management; the priority of the task – the task you take- Urgent and importance- not urgent, important- not important, urgent- Not important, not urgent.

Part 2

What is my name? By Sathyavathi from Paths to Skills in English.

UNIT - V

Part 1

Listening: Identifying key terms. **Speaking:** Formal oral presentations on topics from academic contexts - without the use of PPT slides. **Reading:** Reading for comprehension.

Writing: Writing structured essays on specific topics using suitable claims and evidences. **Grammar and Vocabulary:** Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement).

Soft skills: Goal setting; Immediate goal – Short goal- midterm goal – Life goal.

Part 2

The Power of Prayer by A P J Abdul Kalam from Paths to Skills in English.

TEXT BOOKS

- 1. Pushpa Relia .P & Sanjay Mihhra .K, *English All Round: Communication Skills for Undergraduation Learners*, Vol. I, Orient Black Swan Publishers, First Edition, 2019.
- 2. Prof. Sundaravalli.G et al. ,*Paths to Skills in English*, Orient Blackswan, Publishers, First Edition 2015

REFERENCES

- 1. Bailey, Stephen., *Academic writing: A handbook for international students*. Routledge, 2014.
- 2. Chase, Becky Tarver., *Pathways: Listening, Speaking and Critical Thinking.*, Heinley ELT;2nd Edition, 2018.
- 3. Hewings, Martin., Cambridge Academic English (B2). CUP, 2012.
- 4. Eric H. Glendinning et al, *Study Reading: A Course in Reading Skills for Academic* Purposes, Cambridge University Press; 2 edition, 14 October 2004.
- 6. Pattabiram, B.V, Soft Skills, Sonmez Publication, 2011(2nd Edition).
- 7. Virendranath Yandamuri, *Soft Skills for Engineer*, Yaswin Publication, 2nd Edition, 2009.

Page 31 of 147

I B.Tech. – II Sem.

(20ME0301) ENGINEERING GRAPHICS (Common to all branches)

COURSE OBJECTIVES

The objectives of this course:

- 1. Draw simple curves like ellipse, cycloid and Involutes.
- 2. Describe the Orthographic projections of points, lines and planes.
- 3. Construct the projection of solids like cylinders, cones, prisms and pyramids.
- 4. Sketch the development of the surfaces for practical cut sections of cylinders, cones, prisms and pyramids.
- 5. Depict the isometric and Orthographic Projections of simple objects.

COURSE OUTCOMES (COs)

At the end of the course, the student will be able to

- 1. Interpret the engineering drawing fundamentals to draw the curves like ellipse, cycloid and Involutes.
- 2. Know the projection of points and implement the same in the construction of projection of lines and planes.
- 3. Recognize the basic solids like cylinders, cones, prisms and pyramids and sketch the projections of them.
- 4. Explain the sectional views of Right regular Solids and Apply visualization skills in developing new products.
- 5. Understand the basic principles of isometric and Orthographic Projections.
- 6. Construct the isometric and orthographic projections of simple objects.

UNIT – I

Introduction to Engineering Drawing: Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections – Eccentricity method, Rectangle Method, Parallelogram Method, Cycloids- Epi & Hypo-Cycloids and Involutes.

UNIT - II

Projections of Points: Principles of Orthographic Projections-Conventions - Projections of Points.

Projections of straight lines: Inclined to both the planes (Trapezoidal Method & Rotating line method) - simple problems only, Traces

UNIT - III

Introduction to plane surfaces: Surface Inclined to one plane - Surface inclined to both reference planes

Projections of Solids: Introduction—Projections of right regular solids-Prisms, Pyramids in different positions (Inclined to one plane only).

UNIT - IV

Section of solids - Sectional Views of Right regular Solids - Prisms, Pyramids **Development of surfaces** - Development of surfaces of Right Regular Solids - Prisms, Pyramids.

UNIT - V

Orthographic Projections - Principles of Orthographic projection, Conversion of objects from 3D to 2D

Isometric Projections - Principles of Isometric projection — Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids, Conversion of 2D to 3D.

TEXT BOOKS

- 1. K. L. Narayana, P.Kannaiah , *A text Book of Engineering Drawing*, Scitech Publishers, 23rd Reprint Edition, 2010.
- 2. N. D. Bhatt, Engineering Drawing, Charotar Publishers, 49th Edition, 2008.

REFERENCES

- 1. K. Venugopal, *A text Book of Engineering Drawing and Graphic*, New Age Publishing, 5th Edition, 2008.
- 2. Warren J. Luzadder & Jon M, *Fundamentals of Engineering Drawing*, Peach Pit Press, 11th Edition, 1992.
- 3. Dhananjay A Jolhe, *Engineering Drawing with An introduction to AutoCAD*, McGraw Hill Education; 1st Edition, 2017.

Page 33 of 147

I B.Tech. – II Sem.

L	T	P	C
3	-	-	3

(20CS0503) DIGITAL LOGIC DESIGN

COURSE OBJECTIVES

The objectives of this course:

- 1. Impart basic knowledge of digital logic levels
- 2. Describe various digital electronic circuits.
- 3. Introduce the concepts of Random Access Memory and Programmable Logic Arrays

COURSE OUTCOMES (COs)

At the end of this course, the student will be able to

- 1. Demonstrate the fundamentals of digital logic design concepts.
- 2. Apply the minimization techniques for logical function reduction.
- 3. Describe the function of logical circuits.
- 4. Analyze the different types of logical circuits.
- 5. Implement the digital logic functions using logical circuits.
- 6. Develop the digital circuits to meet a set of requirements.

UNIT- I

Binary systems and Boolean algebra: Digital Systems - Binary Numbers - Number Base Conversions - Octal and Hexa decimal Numbers - Complements - Signed Binary Numbers - Binary Codes - Binary Storage and Registers - Axiomatic Definition of Boolean Algebra - Basic Properties of Boolean Algebra - Boolean Functions - Canonical and Standard Forms - Other Logic Operations - Digital Logic Gates.

UNIT- II

Gate–Level Minimization: The Map Method - Four Variable Map - Five-Variable Map - Product of Sums Simplification - Don't-Care Conditions - NAND and NOR Implementation - Other Two Level Implementations - EX-OR Function.

UNIT-III

Combinational Logic: Combinational Circuits - Analysis Procedure - Design Procedure - Binary Adder - Subtractor - Decimal Adder-Binary Multiplier - Magnitude Comparator - Decoders-Encoders - Multiplexers - De-Multiplexers.

UNIT-IV

Synchronous Sequential Logic: Sequential Circuits – Latches - Flip-Flops - Analysis of Clocked Sequential Circuits - State Reduction and Assignment - Design Procedure – Registers

- Shift Registers - Ripple counters - Synchronous counters - Ring Counter and Johnson Counter.

UNIT-V

Memory And Programmable Logic: Random access memory - Memory decoding - Error Detection and Correction - Read-only Memory - Programmable Logic Array Programmable Array Logic - Sequential Programmable Devices - Integrated circuits.

TEXT BOOKS

- 1. M.Morris Mano & Micheal D., Digital Design, Ciletti, Pearson, 5th Edition, 2013.
- 2. David J. Comer, Digital Logic & State Machine Design, Oxford University Press, 3rd Reprinted Indian Edition, 2012.

REFERENCES

- 1. R.D. Sudhakar Samuel, Digital Logic Design, Elsevier
- 2. Roth, Cengage, Fundamentals of Logic Design, 5/e
- 3. Malvino, Saha, Digital Logic Design, Leach, TMH
- 4. R.P. Jain, Modern Digital Electronics, TMH
- 5. A.P. Godse, D.A. Godse, Digital Logic Design, Technical Publications Pune, 2009.

Page 35 of 147

I B.Tech. – II Sem.

L	T	P	C
-	_	3	1.5

(20HS0803) APPLIED CHEMISTRY LAB

COURSE OBJECTIVES

The objectives of this course:

- 1. Learn to estimate the chemical impurities present in water such as hardness, alkalinity, chlorine, etc.
- 2. Understand and experience the formation of inorganic complex and analytical technique for trace metal determination.
- 3. Be trained to use the instruments to practically understand the concepts of electrochemistry.
- 4. Bridge theoretical concepts and their practical engineering applications, thus highlighting the role of chemistry in engineering.
- 5. Learn and understand the practical implementation of fundamental concepts

COURSE OUTCOMES (COs)

On successful completion of this course, student will be able to

- 1. Develop and perform analytical chemistry techniques to address the water related problems (for e.g., hardness, alkalinity present in water) technically.
- 2. Prepare advanced polymer materials
- 3. Estimate the Iron in cement
- 4. Handle electro-analytical instruments like digital conductivity meter and potentiometer to perform neutralization, precipitation and redox titrations respectively.
- 5. Think innovatively and improve the creative skills that are essential for solving engineering problems

LIST OF EXPERIMENTS:

- 1. Conductometric Titration of Strong acid vs Strong base
- 2. Conductometric Titration of Weak acid vs. Strong base
- 3. Determination of Hardness of a Groundwater sample.
- 4. pH metric titration of Strong acid vs. Strong base,
- 5. Potentiometry Determination of Redox potentials and emfs
- 6. Determination of Strength of an Acid in Pb-Acid battery
- 7. Preparation of a Polymer
- 8. Determination of viscosity of an oil by Redwood viscometer.
- 9. Determination of percentage of Iron in Cement sample by Colorimetry
- 10. Determination of acidity of water sample.
- 11. Determination of Alkalinity of water sample.
- 12. Determination of Percentage Moisture content in a Coal sample

TEXT BOOKS

- 1. J. Mendham et al, *Vogel's Text book of Quantitative Chemical Analysis*, Pearson Education, Sixth Edition, 2002.
- 2. Chandra Sekhar, G.V. Subba Reddy and Jayaveera, *Chemistry Practical Lab Manual*, McGraw Hill Higher Education, 2015.

B.Tech - CAD

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

I B.Tech. – II Sem.

(20HS0811) COMMUNICATIVE ENGLISH LAB (Common to CSE & CIVIL)

COURSE OBJECTIVES

The objectives of this course:

- 1. Students will be exposed to a variety of self-instructional, learner friendly modes of language learning.
- 2. Students will cultivate the habit of reading passages from the computer monitor. Thus providing them with the required facility to face computer based competitive exams like GRE, TOEFL, and GMAT etc.
- 3. Students will learn better pronunciation through stress, intonation and rhythm.
- 4. Students will be trained to use language effectively to face interviews, group discussions, and public speaking
- 5. Students will be initiated into greater use of the computer in resume preparation, report writing, format making etc.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Remember and understand the different aspects of the English language proficiency with emphasis on LSRW skills.
- 2. Apply communication skills through various language learning activities.
- 3. Analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.
- 4. Evaluate and exhibit acceptable etiquette essential in social and professional Settings.
- 5. Create awareness on mother tongue influence and neutralize it in order to improve fluency in spoken English.
- 6. Use effective communicative approaches by preparing job application, report and other kinds of writing correspondences.

LIST OF EXPERIMENTS:

1. PHONETICS

a. Definition - Articulation - Phonetic Chart - Pure Vowels and Diphthongs.

2. MINIMAL PAIRS

a. Definition - Minimal Pairs 1 - Minimal Pairs 2

3. CLUSTERS AND MARKERS

- a. Consonant Clusters Initial Consonant Cluster -Final Consonant Clusters
- b. Past Tense Markers Plural Markers.

4. ICE BREAKING ACTIVITY

a. Ice Breakers Overview - Ice Breakers Activity - Why Ice Breaker.

5. SYLLABLE

a. Syllable Overview -Syllable Types.

6. STRESS

a. Syllable Stress - Stress Pattern - Stress and Rhythm - Word Stress - Sentence Stress.

7. Accent & Intonation

a. Intonation overview- Intonation making lists – Intonation questions – Intonation – yes or no questions – notes.

8. JAM

a. Jam tips - Sample topics.

9. Listening skills

a. Listening skills - Effective listening - Listening importance - Barriers to listening.

10. ROLE PLAY 1

 a. Greetings - Giving compliments - Making requests - Hobbies - Asking permission -Thanking.

12. ROLE PLAY 2

a. Comparing and contrasting - Agreeing and dis agreeing - Expressing opinions - Likes and dis likes - Formal and informal – Suggestions - Polite requests - Meeting people.

13. ROLE PLAY 3

a. Phone calls – Directions.

14. Description

a. Describing a person- Adjectives to describe – Giving direction – Asking giving direction – describing a product – Describing products – Personal narrative – narrative writing Notes.

15. Book review

a. Introduction – Book review over view- Book review tips – Book review notes.

16. Information Transfer

a. Information writings –Text to Diagram- Diagram to Text.

Minimum requirements for Communicative English Lab

- 1. Computer Assisted Language Learning (CALL) Lab: The Computer Assisted Language Lab for 60 Students with 60 systems one Master Console, LAN facility and English Language Software for self-study by learners.
- 2. Communicative English Lab with movable chairs and audio visual aids with a P. A. system, Projector, a Digital stereo audio & video system and Camcorder etc.

System Requirement (Hardware component)

Computer network, LAN with minimum 60 multimedia systems with the following:

Specifications

- i) a) Intel (R) core (TM) i3
 - b) Speed 3.10 GHZ
 - c) RAM 4GB
 - d) Hard Disk 320 GB
- ii) Headphones with High quality

Software

Walden Info Tech Software

REFERENCES

- 1. T. Balasubramanian., A Textbook of English Phonetics for Indian Students, second edition, (Mcmillian) 2012.
- 2. Dhamija Sethi, *A Course in Phonetics and spoken English*, Prentice-hall of India Pvt. Ltd, 2000.
- 3. Krishna Mohan & NP Singh , Speaking English Effectively, Second Edition 2011 (Mcmillian).
- 4. E.Sureshkumar ,P.Sreehari, *A Hand Book of English Laboratories*, Foundation books, 2011.
- 5. M Ashraf Rizvi, Director, Jaipuria Institute of Management, Lucknow, *Effective Technical Communication*, McGraw Hill Education; Second edition (27 July 2017).

Page 39 of 147

I B.Tech. – II Sem.

L	T	P	C
-	-	3	1.5

(20ME0302) WORKSHOP PRACTICE LAB

COURSE OBJECTIVES

To make the student

- 1. Familiarize with the different types of wood and carpentry joints.
- 2. Develop Tapered Tray and Conical funnel using sheet metal.
- 3. Acquire practical knowledge on Fitting and Electrical Wiring.
- 4. Learn about various peripherals of a computer.
- 5. Know about installation of MS Windows & Linux.
- 6. Gain knowledge on Productivity tools & Networking.

COURSE OUTCOMES (COs)

Upon Completion of the course the students will be able to

- 1. Describe the different types of wood and carpentry joints.
- 2. Produce Tapered Tray and Conical funnel using sheet metal.
- 3. Understands about Fitting and Electrical Wiring.
- 4. Identify various peripherals of a computer.
- 5. Explain the procedure to install MS Windows & Linux.
- 6. Understand about Productivity tools & Networking.

PART A LIST OF EXPERIME NTS:

CARPENTRY: Familiarity with different types of woods and tools used in wood working and make following joints

1. T-Bridle joint 2.Corner Dovetail joint

SHEET METAL WORKING: Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal jobs using GI sheets.

1. Tapered tray 2. Conical funnel

FITTING: Familiarity with different types of tools used in fitting and do the following fitting exercises

1. Step Fitting 2.V-Fit

ELECTRICAL WIRING: Familiarity with different types of basic electrical circuits and makes the following connections

- 1. Parallel and series
- 2. Two way switch
- 3. Go down lighting
- 4. Tube light
- 5. Three phase motor
- 6. Soldering of wires

PART B

Task 1:

Identification of the peripherals of a computer: To prepare a report containing the block diagram of the CPU along with the configuration of each peripheral and its functions. Description of various I/O Devices

Task 2:

A practice on disassembling the components of a PC and assembling them.

Task 3:

1. Basic DOS commands, Installation of MS windows. 2. Basic Linux Commands, Installation of Linux.

Task 4:

Hardware Troubleshooting (Demonstration): Identification of a problem and fixing the solution (improper assembly or defective peripherals). Software Troubleshooting (Demonstration): Identification of a problem and fixing the PC for any software issues

Productivity tools Task 5:

- 1. **MS Word Orientation:** Accessing, overview of toolbars, saving files, Using help and resources, rulers, formatting ,Drop Cap , Applying Text effects, Using Character Spacing, using templates, Borders and Colors, Inserting Header and Footer, Using Date and Time option, security features in word, converting documents while saving
- 2. **Presentations:** Creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colors, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyper linking, running the slide show, setting the timing for slide show. Students should submit a user manual of the Presentation tool considered.
- 3. **Spread sheet:** Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet application considered.

Page 41 of 147

Task 6:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc should be done by the student. The entire process has to be documented.

TEXT BOOKS

- 1. V Ramesh Babu, Engineering Workshop for JNTU, VRB Publishers Pvt. Ltd., 2009.
- 2. Peter Norton, Introduction to Computers, McGraw Hill, 7th Edition, 2017.
- 3. Joan Lambert, Joyce Cox, MOS study guide for word, Excel, Power point & amp; Outlook Exams, PHI. 1st Edition, 2011.

REFERENCES

- 1. P. Kannaiah & K.L. Narayana, Workshop Manual, SciTech Publishers, 2010.
- 2. *Introduction to Information Technology*, ITL Education Solutions limited, Pearson Education.2009.
- 3. Rusen, Networking your computers and devices, PHI, 2009.
- 4. Bigelows, Trouble shooting, Maintaining & amp; Repairing PCs, TMH, 2010.

Page 42 of 147

I B.Tech. - II Sem.

(20HS0816) INDIAN CONSTITUTION (NON-CREDIT COURSE)

		C
		-

(Common to All Branches)

COURSE OBJECTIVES

The objectives of this course:

- 1. To know the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- 2. To address the growth of Indian opinion regarding modern Indian intellectuals 'constitutional role.
- 3. To address entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- 4. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.
- 5. To acquire knowledge for various competitive examinations.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Explain the key concepts of political economy.
- 2. Analyse the significant developments in the political ideologies.
- 3. Describe the salient features of the constitution of India interpret, integrate and critically.
- 4. Analyse the political economy of Indian international relations and gain knowledge in Judiciary system.
- 5. Apply their knowledge and skills acquired to write various competitive examinations.
- 6. Analyse the constitutional rights in relating to Practical life.

UNIT-I

Constitution: Definition, Introduction, Meaning of the term,- Indian Constitution: Sources and Features

UNIT-II

Historical Perspective of Indian Constitution: The Government Act of 1919and1935 - A Dual Form of Government – The Constitutional Reforms of Simon commission –Formation of Drafting Committee – The Role of Constitution Assembly. Salient features and characteristics of the Constitution of India: Structure of the Indian Union: Federalism, Centre- State relationship.

UNIT-III

Scheme of the Fundamental Rights: Concept of Fundamental Rights in India, Justifiability of Fundamental Rights - Reach of Fundamental Rights - The scheme of the Fundamental Duties and its Legal Status: Fundamental Duties in India – Article 51A - Introduction to Fundamental Duties in India – Importance of Fundamental Duties. The Directive Principles of State Policy - Its importance and implementation - The Potential of Directive Principles of State Policy for the Judicial Enforcement of Socio-Economic Rights.

UNIT-IV

Parliamentary Form of Government in India: Origin, growth and development of the parliamentary system in India – Chief Characteristics of Indian Parliament – Constitutional Powers and Functions of Indian Parliamentary system. The President of India: Qualifications of President - Election of President, Tuner of President - Status, Powers and Functions of President. The Historical Perspectives of the Constitutional Amendments in India: Types of Amendments & Constitutional Amendment Process in India - Indian Polity-Judiciary System Introduction to Indian Judiciary System - Independent Indian Judiciary - Indian Judiciary Structure - Powers and Functions of Indian Judiciary

UNIT-V

Local Self Government – Constitutional Scheme in India - District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: Zila Pachayat, Elected officials and their roles, CEO Zilla Pachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

Election Commission: Role and Functions of Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women

TEXT BOOKS

- 1. Government of India Ministry of Law and Justice (Legislative Department), *The Constitution of India, 1950 (Bare Act)* Government Publication, 2015
- 2. Dr. Busi, S.N *Dr. B.R.* Ambedkar, *framing of Indian Constitution*, 1st Edition, Government Publication 2015

- 1. Jain M. P, *Indian Constitution Law* LexisNexis Publishers 7th Edition.2014.
- 2. Basu D.D, Introduction to the Constitution of India Lexis Nexis,8th Edition 2015
- 3. BakshiP.M, Constitution of India Universal Law Publishing.15th Edition,2018

II B.Tech. – I Sem.

L	T	P	C
3	-	-	3

(20HS0845) MATHEMATICAL AND STATISTICAL METHODS

COURSE OBJECTIVES

The objectives of this course:

- 1. The Number Theory basic concepts useful for cryptography etc.
- 2. To read and understand the current performance analysis and queueing theory.
- 3. Stochastic process and Markov chains.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Apply the number theory concepts to cryptography domain.
- 2. Design solution for problems using congruences.
- 3. Understand the stochastic processes, Markov chains, Transition probability matrix and various types of states.
- 4. Use statistical reasoning, formulate a problem in statistical terms, perform exploratory analysis of data and carry out a variety of formal inference procedures.
- 5. Resolve the potential misconceptions and hazards in each topic of study.
- 6. Analyze the problem and identify the structures required to generate the mathematical solution.

UNIT - I

Greatest Common Divisors and Prime Factorization:

The Greatest integer function, Diophantine approximation, Mathematical induction, The Fibonacci numbers, Divisibility, Greatest common divisors, Computer operations with integers, Primes and greatest common divisors and their properties, The Euclidean algorithm, The fundamental theorem of arithmetic, Factorization of integers and the Fermat numbers, Linear Diophantine equations.

UNIT - II

Congruences: Introduction to congruences, Linear congruences, The Chinese remainder theorem, solving polynomial congruences, Systems of linear congruences.

Applications of Congruences: Divisibility tests, Wilson's theorem and Fermat's little theorem, Euler's theorem, The Euler's Phi-function, The sum and number of divisors.

UNIT - III

Estimation: Introduction, Statistical Inference, Classical Methods of Estimation. Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Maximum Likelihood Estimation.

UNIT - IV

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, nstep transition probabilities, Markov chain, Steady state condition, Markov analysis.

UNIT - V

Queueing Theory: Introduction, Pure birth and death process, M/M/1: Finite and Infinite Queueing models, M/M/S: Multiple server with unlimited capacity and their related simple problems.

TEXT BOOKS

- 1. Kenneth H. Rosen, *Elementary number theory & its applications*, sixth edition, Addison- Wesley, ISBN 978 0-321-50031-1.
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, *Probability & Statistic for Engineers & Scientists*, 9th Ed. Pearson Publishers.

REFERENCES

- 1. Moorthy MBK, *Probability and Queuing Theory*, Scitech Publications (India) Pvt Ltd, 2010.
- 2. T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
- 3. Sheldon M Ross, *Probability and statistics for Engineers and scientists*, Academic Press.

Page 46 of 147

II B.Tech. – I Sem.

L	T	P	C
3	-	-	3

(20CS0504) COMPUTER ORGANIZATION & ARCHITECTURE

COURSE OBJECTIVES

The objectives of the course to

- 1. Explain the fundamentals of computer organization and its relevance to classical and Modern problems of computer design
- 2. Make the students understand the structure and behavior of various functional modules of a computer.
- 3. Understand the techniques that computers use to communicate with I/O devices.
- 4. Illustrate the concepts of pipelining and the way it can speed up processing.
- 5. Understand the basic characteristics of multiprocessors

COURSE OUTCOMES (COs)

On successful completion of the course, the student will be able to

- 1. Describe the basic structure of computers with their fundamental operations
- 2. Define different number systems, data representation and operations with this representation
- 3. Demonstrate the register transfer and micro operations performance
- 4. Illustrate the types of CPU control unit design
- 5. Understand the memory hierarchy and distinguish between them.
- 6. Design the pipelining and multiprocessors supporting computer architecture

UNIT-I

Basic Structure of Computers: Functional Units, Basic Operational Concepts, Basic I/O Operations, Bus Structures, Instruction Cycle, Data Transfer, Data Manipulation and Program Control, Addressing Modes.

UNIT-II

Data Representation: Signed number representation, Fixed and Floating point representations, Character representation.

Computer Arithmetic: Integer addition and subtraction, Multiplication – shift and add, Booth multiplication, Division, Signed operand multiplication, Floating point arithmetic.

UNIT-III

Register Transfer and Micro operations: Register Transfer Language, Register Transfer, Bus and Memory Transfers: Arithmetic Micro operations, Logic Micro operations, Shift Micro operations.

CPU control unit design: Hardwired control, Micro-programmed control, Address Sequencing.

B.Tech - CAD

UNIT-IV

Memory Organization: Concept of hierarchical memory organization, Main memory, Semiconductor memory technologies, Cache memory, Virtual memory, Auxiliary memory, Direct Memory Access(DMA).

UNIT-V

Pipelining: Basic concepts of pipelining, Arithmetic pipeline, Instruction pipeline, Instruction Hazards.

Parallel Processors: Introduction to parallel processors, Multiprocessor, Interconnection structures and Cache coherency.

TEXT BOOKS

- 1. Carl Hamacher, Zvonko Vranesic, SafwatZaky and Naraig Manjikian, *Computer Organization and Embedded Systems*, Sixth Edition, McGraw Hill Education, 2012.
- 2. M.Morris Manno, Computer System Architecture, Third Edition, Pearson, 2017.

- 1. Carl Hamacher, ZvonkoVranesic, and SafwatZaky, *Computer Organization*, Fifth Edition, McGraw Hill Education, 2011.
- 2. John P. Hayes, *Computer Architecture and Organization*, Third Edition, McGraw Hill Education, 2017.
- 3. David A. Patterson and John L. Hennessy, *Computer Organization and Design: The Hardware/Software Interface*, Fifth Edition, 2014.

II B.Tech. – I Sem.

L	T	P	C
3	-	-	3

(20CS0505) DATABASE MANAGEMENT SYSTEMS

COURSE OBJECTIVES

The objectives of this course

- 1. Understand the different issues involved in the design and implementation of a database system.
- 2. Study the physical and logical database designs, database modelling, relational, hierarchical, and network models
- 3. Understand and use data manipulation language to query, update, and manage a database
- 4. Understand the concept of a database transaction and related database facilities.
- 5. Design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Understand the basics and importance of database
- 2. Design the databases using E_R method for a given specification of requirements.
- 3. Develop relational algebra expressions to query and optimize the database using SQL
- 4. Apply Normalization techniques on given database.
- 5. Describe the ACID properties and concurrency control.
- 6. Understand the system recovery, Physical Storage Media and RAID concepts.

UNIT- I

Introduction: Database System Applications, Purpose of Database Systems, View of Data, Data Abstraction, Data Independence, Data Models, Database Languages, Database Architecture, Database Users and Administrators.

Introduction to Data base design: ER diagrams, Entities, Attributes and Entity sets, Relationships and Relationship sets.

UNIT- II

Relational Algebra and Calculus: Relational Algebra - Selection and Projection, Set operations, Renaming, Joins.

Form of Basic SQL Query- Examples of Basic SQL Queries, Introduction to Nested Queries, Correlated Nested Queries, Set - Comparison Operators, Aggregate Operators, NULL values - Comparison using Null values, Disallowing NULL values, Triggers and Active Data bases.

B.Tech - CAD

UNIT-III

Introduction to Schema Refinement- Problems Caused by redundancy, Functional Dependencies, Normal Forms - FIRST, SECOND, THIRD Normal forms – BCNF.

Properties of Decompositions: Lossless join Decomposition, Dependency preserving Decomposition - FOURTH Normal Form, FIFTH Normal form.

UNIT-IV

Transaction and Concurrency: Transaction Concepts – ACID Properties –Transactions and Schedules- Transaction States - Concurrent Execution, Serializability - Types of Failures.

UNIT-V

Recoverability: System Recovery – Media Recovery – Two Phase locking – Deadlock-Detection, Recovery and Prevention.

Physical Storage and Database Concepts: Overview of Physical Storage Media and RAID.

TEXT BOOK

1. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, *Database System Concepts*, Sixth Edition, Tata McGraw Hill, 2011.

- 1. RamezElmasri and Shamkant B. Navathe, *Fundamentals of Database Systems*, Fifth Edition, Pearson Education, 2008.
- 2. Raghurama Krishnan, Johannes Gehrke, *Database Management Systems*, 3rd Edition, McGrawHill Education, 2003.
- 3. J. D. Ullman, *Principles of Database and Knowledge Base Systems*, Computer Science Press.
- 4. Peter Rob & Carlos Coronel, *Database Systems Concepts*, Cengage Learning2008.
- 5. C.J. Date, *Introduction to Database Systems*, Pearson Education.

II B.Tech. – I Sem.

L	T	P	C
3	-	-	3

(20CS0507) OPERATING SYSTEMS

COURSE OBJECTIVES

The objectives of this course

- 1. Explain main components of an OS & their functions.
- 2. Describe the process management and scheduling.
- 3. Discuss various issues in Inter Process Communication (IPC) and the role of OS in IPC.
- 4. Illustrate the concepts and implementation of Memory management policies and virtual memory
- 5. Explain working of an OS as a resource manager, file system manager, process manager, memory manager and I/O manager and methods used to implement the different parts of OS.

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand the basics of operating system along with the system structure.
- 2. Describe process and threads along with their management and implementations
- 3. Analyze the requirement for process synchronization and deadlocks handled by operating system.
- 4. Analyze the memory management and its allocation policies.
- 5. Categorize the storage management policies with respect to file management technologies
- 6. Discuss the need for protection and security of the operating system

UNIT - I

Operating Systems Overview: What is an operating system-History of operating systems-Operating system functions- Operating systems Operations-Types of Operating Systems and Computing Environments.

System Structures: Operating System Services-User and Operating-System Interface-systems calls- Types of System Calls- system programs- Structure of an OS - Layered Monolithic- Microkernel Operating Systems and Concept of Virtual Machine.

UNIT - II

Processes: Process, Process state, Process Scheduling,-Schedulers- Inter process Communication synchronization--Scheduling Algorithms: FCFS-SJF-Priority-RR-Message Passing

Threads: Definition, Multithreading-Advantages-ULTs,-KLTs-Thread Libraries- Difference between ULTs and KLTs.

UNIT - III

Process Synchronization: Critical Section- Mutual Exclusion- Semaphores- Monitors. Classical Problems of Synchronization: The Producer- Consumer Problem -Dinning Philosopher Problem- Reader's & Writer Problem

Deadlocks: Definition- Deadlock Characteristics- Deadlock Prevention and Deadlock Avoidance: Banker's algorithm- Deadlock detection and Recovery.

UNIT - IV

Memory Management: Main Memory-Swapping-Contiguous Memory allocation Paging-Segmentation.

Virtual memory: Basics of Virtual Memory- Demand paging-Page-replacement- Page Replacement algorithms-Thrashing.

Disk scheduling: Overview of Mass Storage Structure- FCFS- SSTF- SCAN- C-SCAN- Disk Management.

UNIT - V

File Management: Concept of File- Access methods-File types-File operation-Directory structure-File System structure- Allocation methods (contiguous, linked, indexed)- Free-space management (bit vector, linked list, grouping)

Protection & Security: Goals of Protection- Principles of Protection- Domain of Protection-Access matrix- Authentication - Threats- Intruders- Basics of Cryptography- Secret keypublic key- One-Way Function- Digital Signature.

TEXT BOOKS

- 1. Abraham Silberchatz, Peter B. Galvin, Greg Gagne, *Operating System Concepts*, Wiley, Eight Editions.
- 2. Andrew S Tanenbaum, *Modern Operating Systems*, Pearson Education International, Third Edition.

- 1. Charles Crowley, *Operating System: A Design-oriented Approach*, Irwin Publishing, 1st Edition.
- 2. Gary J. Nutt, *Operating Systems: A Modern Perspective*, Wesley, 2nd Edition.
- 3. Maurice Bach, *Design of the Unix Operating Systems*, Prentice-Hall of India, 8th Edition.

II B.Tech. – I Sem.

L	T	P	С
3	-	-	3

(20CS0511) PYTHON PROGRAMMING

COURSE OBJECTIVES

The objectives of this course

- 1. Introduce Scripting Language
- 2. Exposure to various problem solving approaches of computer science
- 3. Introduce function-oriented programming paradigm
- 4. Exposure to solve the problems using object oriented concepts, exceptional handling
- 5. Exposure to solve the problems using Files, Regular Expressions and, Standard Libraries

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Understanding the basics of python, I/O statements and its applications.
- 2. Summarize the features of lists, tuples, dictionaries and strings.
- 3. Acquire the skills in different operators and statements in python.
- 4. Interpret the functions and Object Oriented Programming Concepts in python.
- 5. Develop skills to understand and implement the modules, libraries and exception handling.
- 6. Utilize different functional programming and file handling operations in python and can demonstrate the GUI applications.

UNIT – I

Introduction: History of Python- Python features- Applications-Programming Using the REPL-Running Python Scripts-Variables — Assignment- Keywords- Input-Output-Indentation. **Data Types: Single-Value data types** - int, float, Complex and Boolean.

Multi-Valued Data types - Lists, Tuples, Sets, Dictionaries, Strings- indexing and slicing.

UNIT - II

Operators and Expressions: Operators-Arithmetic Operators, Comparison Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators-Expressions and order of evaluations

Control Flow: Branching- simple if, if-else, if-elif-else, nested if, looping-while and for-jumping – break- continue and pass

UNIT - III

Functions: Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions-Nested functions, Recursive functions-Scope of the Variables in a Function.

Object Oriented Programming in Python: Classes and Objects- self-variable- Methods – Constructor- Inheritance-polymorphism- Method Overloading- Method Overriding.

UNIT - IV

Modules: Creating modules, import statement, from...import statement and name spacing. **Python packages**: Introduction to PIP- Installing Packages via PIP (Numpy, Pandas, MatPlotlib etc.,)- Using Python Packages.

Exception Handling: Introduction to Errors and Exceptions, Handing Exceptions, Raising Exceptions, User Defined Exceptions, Regular Expressions-Searching and Matching.

UNIT - V

Functional Programming: Iterators and Generators - Maps and Filters.

Files: Text files- Reading and Writing files- Command line arguments.

Brief Tour of the Standard Library: Dates and Times- Data Compression- Python Runtime Services- Data Management and Object Persistence.

GUI Programming - Turtle Graphics

TEXT BOOKS

- 1. Reema Thareja, *Python Programming: Using Problem Solving Approach*, First Edition, Oxford University Press.
- 2. Vamsi Kurama, Python Programming: A Modern Approach, Pearson.

- 1. Mark Lutz, *Learning Python*, O Reily, 4th Edition, 2009.
- 2. Tim Hall and J-P Stacey, Python 3 for Absolute Beginners, 2009.
- 3. Magnus Lie Hetland, *Beginning Python: From Novice to Professional*, 2nd Edition, 2009.

II B.Tech – I Sem.

L	T	P	C
3	-	1	3

(20HS0864) HUMAN VALUES AND PROFESSIONAL ETHICS

COURSE OBJECTIVES

The Objective of the course:

- 1. Create awareness on Human Values.
- 2. Impart knowledge on an Engineering Ethics
- 3. Install morality, accountability in an engineering experimentation
- 4. Create awareness on an assessment of safety, risk and rights
- 5. Develop knowledge on global issues
- 6. Create an awareness on Human Values and Engineering Ethics, Engineers social responsibility in an experimentation, appreciate the rights of others and ethics in global issues.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to:

- 1. Identify and analyse human values in their relevant field
- 2. Assess their own engineering ethics and have the social consciousness
- 3. Get knowledge on codes of ethics and on an utilitarian thinking
- 4. Identify safety, risks and an ethical concern in research and intellectual contexts
- 5. know necessity of computer and an environmental ethics, give a picture on weapons development
- 6. Upon completion of the course, the student should be able to apply the ethics in society, discuss an ethical issues related to engineering and realize the responsibilities and rights in the society

UNIT I

Human Values - Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self-confidence – Character – Spirituality – Necessity of Yoga and meditation for professional excellence and stress management.

UNIT II

Engineering Ethics - Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self- interest – Customs and Religion – Uses of Ethical Theories

UNIT III

Engineering As Social Experimentation- Engineering as Experimentation - Engineering Projects VS Standard Experiments, Engineers as responsible Experimenters—Conscientiousness - Comprehensive Perspective - Moral Autonomy - Accountability, Industrial Standards, Codes of Ethics - A Balanced Outlook on Law.

UNIT IV

Safety, Responsibilities And Rights- Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk, Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

UNIT V

Global Issues-Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility

TEXT BOOKS

- 1. R S Nagarajan, *Professional Ethics and Human Values*, New Age International (P) Limited Publishers, 3rd Edition, 2006
- 2. M.Govindarajan, S.Natarajananad, V.S.SenthilKumar, *Engineering Ethics includes Human Values* -PHI Learning Pvt. Ltd- 2nd Edition,2009

REFERENCES

- 1. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, *Engineering Ethics Concepts and Cases*, Cengage Learning, 2nd Edition, 2009
- 2. John R Boatright, *Ethics and the Conduct of Business*, Pearson Education, New Delhi, 1st Edition, 2003
- 3. Edmund G Seebauer and Robert L Barry, *Fundamentals of Ethics for Scientists and Engineers*, Oxford University Press, Oxford, 4th Edition, 2001
- 4. PSR Murthy, *Indian Culture, Values and Professional Ethics*, BS Publication, 2nd Edition, 2013

Page 56 of 147

II B.Tech – I Sem.

L	T	P	C
-	-	3	1.5

(20CS0508) DATABASE MANAGEMENT SYSTEMS LAB

COURSE OBJECTIVES

The objectives of this course

- 1. Illustrate the different issues involved in the design and implementation of a database system.
- 2. Use data manipulation language to query, update, and manage a database.
- 3. Design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to:

- 1. Develop relational algebra expressions for queries and optimize them.
- 2. Design the databases using E_R method for a given specification of requirements.
- 3. Apply Normalization techniques on given database.
- 4. Determine the transaction atomicity, consistency, isolation, and durability for a given transaction-processing system.
- 5. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.
- 6. Execute DDL, DML, DCL commands.

LIST OF EXPERIMENTS:

- 1. Practice session: Students should be allowed to choose appropriate DBMS software, install it, configure it and start working on it. Create sample tables, execute some queries, use SQLPLUS features, and use PL/SQL features like cursors on sample database. Students should be permitted to practice appropriate User interface creation tool and Report generation tool.
- 2. DDL Commands Table Creation, Altering the table structures, truncating a table and dropping a table.
- 3. DML Commands Insert, Select Commands, update & delete Commands.
- 4. Create relationship between the databases Nested Queries & Join Queries
- 5. Create a database and to set various possible constraints.
- 6. Views Create a Virtual table based on the result set of an SQL statement.
- 7. Create PL/SQL functions to implement the stored procedures in SQL (Function and Procedures).
- 8. Write a PL/SQL program using For loop to insert ten rows into a database table.
- 9. Write Relational algebra queries for a given set relations.
- 10. Write a PL/SQL program to execute a number of queries in one block using single command.

TEXT BOOK

1. Raghu Ramakrishnan, Johannes Gehrke, Jeff Derstadt, Scott Selikoff and Lin Zhu, *Database Management Systems solutions manual*, third Edition, 2013.

II B.Tech. – I Sem.

L	Т	P	С
-	-	3	1.5

(20CS0510) OPERATING SYSTEMS LAB

COURSE OBJECTIVES

The objectives of this course

- 1. Build 'C' program for process and file system management using system calls
- 2. Analyze the best CPU scheduling algorithm for a given problem instance
- 3. Analyze the performance of various page replacement algorithms
- 4. Develop algorithm for deadlock avoidance, detection and file allocation strategies
- 5. Simulate frame allocation to process

COURSE OUTCOMES (COs)

On successful completion of this course, students will be able to

- 1. Understand and implement basic services and functionalities of the operating system using system calls
- 2. Implement modern operating system calls and synchronization libraries in software/hardware interfaces
- 3. Describe the benefits of thread over process and implement synchronized programs using multithreading concepts
- 4. Analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority
- 5. Implement memory management schemes and page replacement schemes
- 6. Solve the Problem of deadlock in operating systems and implement them in multiprogramming system.

LIST OF EXPERIMENTS:

- 1. Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time.
 - a) FCFS b) SJF c) Round Robin (pre-emptive) d) Priority
- 2. Write a C program to simulate producer-consumer problem
- 3. Write a C program to simulate the concept of Dining-Philosophers problem.
- 4. Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.
- 5. Write a C program to simulate Bankers algorithm for the purpose of deadlock prevention.
- 6. Write a C program to simulate the MVT and MFT memory management techniques
- 7. Write a C program to simulate paging technique of memory management.

B.Tech - CAD

- 8. Write a C program to simulate the following file allocation strategies.
 - a) Sequential b) Indexed c) Linked
- 9. Write a C program to simulate the following file organization techniques
 - a) Single level directory b) Two level directoryc) Hierarchical
- 10. Write a C program to simulate page replacement algorithms
 - a) FIFO b) LRU c) LFU
- 11. Simulate how operating system allocates frame to process.

TEXT BOOKS

- 1. Abraham Silberchatz, Peter B. Galvin, Greg Gagne, *Operating System Concepts*, Wiley, Eighth Edition.
- 2. Andrew S Tanenbaum, *Modern Operating Systems*, Pearson Education International, 3rd Edition.

- 1. Charles Crowley, *Operating System: A Design-oriented Approach*, Irwin Publishing, 1st Edition.
- 2. Gary J. Nutt, *Operating Systems: A Modern Perspective*, Wesley, 2nd Edition. Maurice Bach, *Design of the Unix Operating Systems*, Prentice-Hall of India, 8th Edition.

II B.Tech. – I Sem.

L	T	P	С
-	-	3	1.5

(20CS0514) PYTHON PROGRAMMING LAB

COURSE OBJECTIVES

The Objectives of this course

- 1. Exposure to various problem solving approaches of computer science
- 2. Learn how to carry out a range of commonly used statistical methods including analysis of variance and linear regression.
- 3. Explore data-sets to create testable hypotheses and identify appropriate statistical tests.

COURSE OUTCOMES (COs)

On successful completion of the course students will be able to

- 1. Write, Test and Debug Python Programs
- 2. Implement Conditionals and Loops for Python Programs
- 3. Create functions and represent Compound data using Lists, Tuples and Dictionaries
- 4. Develop python program to Read and write data from & to files using Pygame
- 5. Build software for real needs.
- 6. Implement real life Project, R Analytics to create Business insights.

LIST OF EXPERIMENTS:

- 1. Implement the following tasks
 - a) Write a python program to check whether the number is positive or negative.
 - b) Write a python program to find whether a given number is even or odd.
 - c) Write a python program to find biggest number among three numbers.
- 2. Implement the following tasks
 - a) Write a python program to displaying reversal of a number.
 - b) Write a python program to print factorial of a number
 - c) Write a python program to generate prime numbers series up to N
- 3. Implement following problems using python script
 - a) Swapping of two numbers with and without using temporary variable.
 - b) If the age of Ram, Sam, and Khan are input through the keyboard, write a python program to determine the eldest and youngest of the three.
 - c) Arithmetic operations (Addition, Subtraction, Multiplication, and Division) on integers. Input the two integer values and operator for performing arithmetic Operation through keyboard.

- 4. Implement the following tasks
 - a) Implement the python program to generate the multiplication table.
 - b) Implement Python program to find sum of natural numbers
 - c) If the first name of a student is input through the keyboard, write a program to display the vowels and consonants present in his/her name.
- 5. Implement the following tasks
 - a) The marks obtained by a student in 5 different subjects are input through the keyboard. Find the average and print the student grade as per the SIETK examination policy
 - b) Given a number x, determine whether it is Armstrong number or not. Hint: For example, 371 is an Armstrong number since 3**3 + 7**3 + 1**3 = 371. Write a program to find all Armstrong number in the range of 0 and 999.
- 6. Implement the following tasks
 - a) Write a Python script to
 - create a list
 - access elements from a list
 - slice lists
 - change or add elements to a list
 - delete or remove elements from a list
 - b) Write a Python script to read the values from a list and to display largest and smallest numbers from list.
 - c) Write a Python script to compute the similarity between two lists.
- 7. Implement the following tasks:
 - a) Write a Python script to read set of values from a Tuple to perform various operations.
 - b) Write a Python script to perform basic dictionary operations like insert, delete and Display.
 - c) Write a Python program to count the occurrence of each word in a given sentence.
- 8. Implement the following tasks
 - a) Write a Python script to create Telephone Directory using dictionary and list to perform basic functions such as Add entry, Search, Delete entry, Update entry, View and Exit.
 - b) Implement Python script to display power of given numbers using function.
 - c) Implement a Python program that takes a list of words and returns the length of the longest one using function.
- 9. Implement the following tasks
 - a) Implement Python program to perform various operations on string using string libraries.
 - b) Implement Python program to remove punctuations from a given string.
 - c) Write a Python program to change the case of the given string (convert the string from lower case to upper case). If the entered string is computer, your program should output COMPUTER without using library functions.

B.Tech - CAD

10. Implement the following tasks

R20

- a) Implement Python program to capitalize each word in a string. For example, the entered sentence god helps only people who work hard to be converted as God Helps Only People Who Work Hard
- b) Write a Python script to display file contents.
- c) Write a Python script to copy file contents from one file to another.

11. Implement the following tasks

- a) Write a Python script to combine two text files contents and print the number of lines, sentences, words, characters and file size.
- b) Write a Python commands to perform the following directory operations.
 - List Directories and Files
 - Making a New Directory
 - Renaming a Directory or a File
 - Removing Directory or File

12. Implement the following tasks

- a) Create a package named Cars and build three modules in it namely, BMW, Audi and Nissan. Illustrate the modules using class. Finally we create the init_.py file. This file will be placed inside Cars directory and can be left blank or we can put the initialization code into it.
- b) Write a python script to display following shapes using turtle.

TEXT BOOKS

- 1. Reema Thareja, *Python Programming: Using Problem Solving Approach*, First Edition, Oxford University Press.
- 2. Vamsi Kurama, Python Programming: A Modern Approach, Pearson.

- 1. Mark Lutz, Learning Python, O Reily, 4th Edition, 2009.
- 2. Mark Lutz, *Programming Python*, O Reily, 4th Edition, 2010.
- 3. Tim Hall and J-P Stacey, Python 3 for Absolute Beginners, 2009.
- 4. Magnus Lie Hetland, *Beginning Python: From Novice to Professional*, 2nd Edition, 2009.
- 5. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, *Data Structures and Algorithms in Python*, 1st Edition, Kindle.

II B.Tech. – I Sem.

L	T	P	С
1	-	2	2

(20CS0546) VISUAL EFFECTS-VFX (SKILL ORIENTED COURSE)

COURSE OBJECTIVES

The objectives of this course

- 1. Visual Effects Course (Vfx Course) is a career Program catering to the increasing demand of skilled and quality manpower for the thriving domestic and International VFX industry.
- 2. This course is aimed at equipping students with the basic and fundamental knowledge needed for creating high end industry standard Visual effects that cannot necessarily be captured in a Camera Shot.
- 3. The VFX Course is a course that would help Multimedia Students understand the basic concepts of Visual Effects and how to use Video Editing software to obtain seamless shots and create internationally standard projects

COURSE OUTCOME (COs)

Students will be able to

- 1. Understand the major video editing software such as Final Cut pro, Adobe premiere pro and Nuke
- 2. Create internationally standard Motion Graphics project for Television stations and Web Media
- 3. Develop the footages into several standard formats of Television, film, Documentary, Commercials or Music Videos
- 4. Design a 3D objects with real life footages
- 5. Compose stunning, crisp and realistic Visual effects
- 6. Implement the models in visual effects

CONTENTS:

- 1. Introduction to photoshop 7.0, Installation of Adobe Photoshop 7.0 freeware
- 2. Photoshop Basics Operaions
- 3. Using of Layers, Masks and Paths
- 4. Fine Tuning your image, Prepping images for the web
- 5. Visual Effects: Set Up Your VFX Content Development Workstation
- 6. Tuning and saving of images from Web
- 7. The Foundation of Raster for VFX: Pixels, Color, and Alpha
- 8. The Foundation of Motion for VFX: Frames and Codecs
- 9. The Foundation of Audio for VFX: MIDI, Wave, and Sample

- 10. The Foundation of 2D Vector for VFX: Point, Path, and SVG
- 11. The Foundation of 3D Vector for VFX: Models and OpenGL
- 12. Introduction to Black Magic Design Fusion

TEXT BOOKS

- 1. Steve Bark, *An Introduction to Adobe Photoshop*, published by Ventus Publishing ApS, 2012.
- 2. Wallace Jaackson, VFX Fundamentals Visula Special Effects using Fusion 8.0, published by Apress, 2012.

REFERENCES

- 1. Martin Watt And Erwin Coumans Visual Effects and Compositing, Jon Gress.
- 2. Karen E. Goulekas, Visual Effects In A Digital World.
- 3. David B. Mattingly *The Digital Matte Painting Handbook*.
- 4. Kelly, Murdock & Eric Allen Body Language Advanced 3d Character Rigging.

WEB REFERENCES

- 1. http://www.luv2code.com/#_blank
- 2. http://www.wallacejackson.com/
- 3. http://chrisoatley.com/upcoming2015/
- 4. https://thewaltdisneycompany.com/employee-profile-spotlight-on-avisualdevelopment- artist-2/
- 5. http://www.artofvfx.com/escape-plan-chris-wells-vfx-supervisor-hydraulx/
- 6. http://conceptartworld.com/artists/interview-with-visual-development-artistlandis-fields/
- 7. https://vfxforfilm.wordpress.com/2013/01/03/mattepainting/
- 8. http://bct.me/tutorials/vfx-supervision-1/
- 9. https://www.pluralsight.com/blog/film-games/understanding-rotoscoping-process-every-vfx-artist-know
- 10. https://cmivfx.com/products/410-cinema-4d-advanced-lighting-and-rendering

II B.Tech. – II Sem.

L	T	P	С
3	-	-	3

(20HS0836) DISCRETE MATHEMATICS

COURSE OBJECTIVES

The objectives of this course

- 1. To train the students thoroughly in Mathematical concepts of Mathematical logic, Relations, Algebraic structures, Recurrence Relation, Graph Theory.
- 2. To prepare students for lifelong learning and successful careers using Mathematical concepts of Mathematical logic, Relations, Algebraic structures, Recurrence Relation, Graph Theory.
- 3. To develop the skill pertinent to the practice of the Mathematical concepts including the students' abilities to formulate and modeling the problems, to think creatively and to synthesize information.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Model problems in Computer Science using graphs and trees and to demonstrate different traversal methods for trees and graphs.
- 2. Write an argument using logical notation and determine if the argument is or is not valid.
- 3. Demonstrate the ability to write and evaluate a proof or outline the basic structure of and give examples of each proof technique described.
- 4. Understand the basic principles of sets and operations in sets.
- 5. Demonstrate an understanding of relations and functions and be able to determine their properties.
- 6. Solve Recurrence Relation Problems using substitution, generating function methods

UNIT-I

Graph Theory:

Representation of Graphs, Sub graphs, Multi graphs, Graph Theory Applications: Dijkstra's Algorithm, Isomorphism. Euler circuits, planar Graphs, Hamiltonian graphs, Chromatic Numbers, Spanning Trees, DFS, BFS.

UNIT-II

Mathematical Logic:

Statements and notations, Connectives, Truth Tables, Well-formed formulae, tautology, equivalence implication, Rules of inference, Consistency, proof of Contradiction, Normal forms.

Predicates: Predicative logic, Free & Bound variables, Quantifiers, Rules of inference, Automatic Theorem Proving.

UNIT-III

Relations:

Properties of Binary Relations, equivalence, transitive closure, compatibility and partial ordering relations.

Functions: Inverse Function, Composition of functions, recursive Functions.

Algebraic structures: Algebraic systems examples and general properties, Semi groups and monoids, groups, sub groups, homomorphism, Isomorphism.

UNIT-IV

Elementary Combinatorics:

Basis of counting, Enumerating Combination & Permutation with repetition, Constrained repetitions, Binomial & Multinomial theorems (without proof), Binomial Coefficients, The principle of Inclusion & Exclusion - Pigeon hole principle and its application.

UNIT-V

Recurrence Relation:

Generating Functions & Sequences, Calculating Coefficient of generating function, Recurrence relations, Solving Recurrence relation by substitution and Characteristic roots, solution of Inhomogeneous Recurrence Relation. Solving Recurrence relation by Generating function.

TEXT BOOKS

- 1. Thomas Koshy, *Discrete Mathematics with Applications*, Elsevier, 2004.
- 2. Chandra Sekharaiah D.S, *Mathematical Foundations of computer Science (Discrete Structures)*, Prism, 2012.

- 1. Liu C.L & Mohapatra D.P, *Elements of Discrete Mathematics* A Computer Oriented Approach, 3rd edition, McGraw Hill Education, 2012.
- 2. Mott J.L, Kandel A & Baker T.P, *Discrete Mathematics for Computer Scientists & Mathematicians*, 2nd edition, Prentice Hall of India, 2008.
- 3. Tremblay J.P and Manohar R, *Discrete Mathematical Structures with Application to Computer Science*, McGraw Hill Publication, 2017.
- 4. Satyanarayana Bh & Syam Prasad K, *Discrete Mathematics and Graph Theory*, Printice Hall of India, New Delhi, April 2014, ISBN: 978-81-203-4948-3.
- 5. Satyanarayana Bh, Venkata Pradeep Kumar T & Mohiddin Shaw S, *Mathematical Foundation of Computer Science*, BS Publications (A unit of BSP Books Pvt. Ltd.), Hyderabad, India, 2016, ISBN: 978-93-83635-81-8.

II B.Tech. – II Sem.

L	Т	P	C
3	-	ı	3

(20CS0901) FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

COURSE OBJECTIVES

The objective of the course is to

- 1. To have a basic proficiency in a traditional AI language including an ability to write simple to intermediate programs and an ability to understand code written in that language
- 2. To have an understanding of the basic issues of knowledge representation and blind and heuristic search, as well as an understanding of other topics such as minimax, resolution, etc. that play an important role in AI programs
- 3. To have a basic understanding of some of the more advanced topics of AI such as learning, natural language processing, agents and robotics, expert systems, and planning

COURSE OUTCOMES

On successful completion of the course, the students will be able to

- 1. Understand the basic concepts and applications of AI
- 2. Explain the problem solving methods and searching algorithms
- 3. Understand the concept Problem reduction, game playing for given problem
- 4. Apply various logic concepts of AI for a given problem
- 5. Demonstrate knowledge of reasoning and knowledge representation for solving real world problems
- 6. Illustrate the construction of learning and expert system

UNIT I

Introduction, history, intelligent systems, foundations of AI, applications, tic-tac-toe game playing, development of AI languages, current trends.

UNIT II

Problem solving: state-space search and control strategies: Introduction, general problem solving, characteristics of problem, exhaustive searches, heuristic search techniques, iterative deepening A*, constraint satisfaction. Problem reduction and game playing: Introduction, problem reduction, game playing, alpha beta pruning, two-player perfect information games.

UNIT-III

Logic concepts: Introduction, propositional calculus, proportional logic, natural deduction system, axiomatic system, semantic tableau system in proportional logic, resolution refutation in proportional logic, predicate logic.

UNIT IV

Knowledge representation: Introduction, approaches to knowledge representation, knowledge representation using semantic network, extended semantic networks for KR, knowledge representation using frames. Advanced knowledge representation techniques: Introduction, conceptual dependency theory, script structure, CYC theory, case grammars, semantic web

UNIT V

Expert system and applications: Introduction phases in building expert systems, expert system versus traditional systems Uncertainty measure: probability theory: Introduction, probability theory, Bayesian belief networks, certainty factor theory, dempster-shafer theory

TEXT BOOKS

- 1. Artificial Intelligence- Saroj Kaushik, CENGAGE Learning
- 2. Artificial intelligence, A modern Approach, 2nded, Stuart Russel, Peter Norvig, PEA References

REFERENCES

- 1. Artificial Intelligence- Deepak Khemani, TMH, 2013
- 2. Introduction to Artificial Intelligence, Patterson, PHI
- 3. Atificial intelligence, structures and Strategies for Complex problem solving, -George F Lugar, 5thed, PEA

Page 68 of 147

II B.Tech. – II Sem.

L	T	P	C
3	-	-	3

(20CS0506) OBJECT ORIENTED PROGRAMMING THROUGH JAVA

COURSE OBJECTIVES

The objectives of this course:

- 1. Gain knowledge about basic Java language syntax and semantics to write Java programs and use concepts such as variables, conditional and iterative execution methods etc
- 2. Understand the basic object oriented programming concepts and apply them in problem solving.
- 3. Illustrate inheritance concepts for reusing the program.
- 4. Demonstrate on the multi-tasking by using multiple threads.
- 5. Understand the basics of java console and GUI based programming

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to:

- 1. Understand the features of java along with OOP concepts, data types and java statements
- 2. Implement classes, constructors and methods
- 3. Apply Exception handling, multi-threading and string handling functions
- 4. Develop the generic classes and demonstrate the file handling operations.
- 5. Design Graphical user Interface using AWT and Swings
- 6. Understand the special features of Java8

UNIT- I

The Java Language -Importance of Java -Programming Paradigms -The History and Evolution of Java -Java Byte Code -The Java Buzzwords.

Introduction of OOP- Abstraction, Encapsulation, Inheritance, Polymorphism-Understanding static - Varargs -Data Types -Type Casting -Java Tokens - Java Statements - Arrays -Command line arguments.

UNIT-II

Introducing Classes –Class Fundamentals -Declaring Objects -Introducing Methods Introduction to Constructors, Constructor Overloading- Garbage Collection -Introducing final -Inheritance -Using Super- Method Overloading, Method Overriding -abstract classes - Packages and Interfaces.

UNIT-III

Exception Handling - Exception Fundamentals - Exception Types -Uncaught Exceptions - Using try and catch - Nested try Statements -throw -throws -finally.

Multithreaded Programming - The Java Thread Model -Thread Priorities -The Thread Class and the Runnable Interface - Creating Multiple Threads -Using isAlive() and join() – Thread Priorities -Synchronization-String Handling.

UNIT-IV

Generics- A simple Generic Example-General form of Generic class-Generic Interfaces Collections overview, Collection class, Collection interfaces.

Introducing File Handling –File handling in java –Stream –Java File Method –File Operation in Java-Create file –Write to a file –Read from a file.

UNIT-V

Introducing the AWT -Using AWT Controls-Introducing Swing -Exploring Swing. **Introducing Java8 Features** –Lambda Expression –Method references –forEach() method - Method and Constructor reference by double colon(::) operator - Stream API –Date & Time API.

TEXT BOOKS

- 1. Herbert Schildt, The Complete Reference Java, Eighth Edition, McGrawHill.
- 2. Cay S. Horstmann, Java SE 8 for the Really Impatient, Addison-Wesley 2014.

- 1. P.J. Deitel and H.M. Deitel, Java for Programmers, Pearson Education.
- 2. Bruce Eckel, *Thinking in Java*, Pearson Education.

II B.Tech. – II Sem.

L	T	P	С
3	-	-	3

(20CS0513) COMPUTER NETWORKS

COURSE OBJECTIVES

The objectives of this course:

- 1. Build an understanding of the fundamental concepts of computer networking.
- 2. Understand how errors detected and corrected that occur in transmission
- 3. How collisions to be handled when many stations share a single channel
- 4. Know about routing mechanisms and different routing protocols
- 5. Understand transport layer functions
- 6. Know about different application layer protocols

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to:

- 1. Understand the terminology and concepts of OSI and TCP/IP Reference models and identify different physical media used for data transmission
- 2. Explain the services of Data link layer
- 3. Describe the principles of network layer and implement routing algorithms used for data transmission
- 4. Describe the concepts of internetworking and Internet Control protocols
- 5. Demonstrate the essential services of transport layer
- 6. Construct the functioning of various protocols of Application layer

UNIT - I

Introduction: Networks, Network criteria, Physical structures - Reference Models: The OSI Reference Model, The TCP/IP Reference Model- Introduction to physical layer: Data and Signals, Data rate limits, Performance.

Transmission Media: Introduction,-Guided Media, -Unguided Media.

UNIT - II

Introduction to Data Link Layer: Introduction, Link layer addressing- Error detection and Correction: Cyclic codes, Checksum, Data link control: DLC Services- Data link layer protocols, HDLC, Point to Point Protocol- Media Access control:-Random Access - Controlled Access- Channelization

UNIT - III

The Network Layer: Network layer design issues- Routing algorithms - Congestion control algorithms - Quality of service- Internetworking- The network layer in the Internet: IPV4 - IPV6, Internet Control protocols- OSPF- BGP.

UNIT - IV

The Transport Layer: The Transport Service- Elements of Transport Protocols- Congestion Control- The internet transport protocols: UDP, TCP- Performance problems in computer networks

UNIT - V

Introduction to Application Layer: Introduction, WWW and HTTP – FTP - E-mail-TELNET - Secure Shell - Domain Name System - SNMP.

TEXT BOOKS

- 1. Behrouz A. Forouzan Data communications and networking 5th edition, 2012, TMH.
- 2. Andrew S. Tanenbaum, Wetherall, Computer Networks, 5th edition, 2010, Pearson.

REFERENCES

- 1. Bhushan Trivedi, Data Communication and Networks, Oxford
- 2. Douglas E. Comer, *Internetworking with TCP/IP Principles, protocols, and architecture,* Volume 1, , 5th edition, PHI
- 3. Davie, Computer Networks II, 5E, Peterson, Elsevier.
- 4. Chawan- Hwa Wu, Irwin, *Introduction to Computer Networks and Cyber Security*||, CRC Publications.
- 5. Comer- Computer Networks and Internets with Internet Applications ...

Page 72 of 147

II B.Tech. – II Sem.

L	T	P	С
3	-	-	3

(20HS0812) MANAGERIAL ECONOMICS & FINANCIAL ANALYSIS

COURSE OBJECTIVES

The objectives of this course

- 1. To familiarize the students with the concepts of microeconomics and make them understand the concept of demand and supply analysis in business applications
- 2. To understand the pricing and output decisions under different market structures
- 3. To understand the basic financial statements and techniques of financial statement analysis

COURSE OUTCOMES (COs)

After the completion of the course student would be able to

- 1. Understand the nature of managerial economics and the role of it in business firms
- 2. Identify the determinants of demand and apply cost analysis under different market conditions
- 3. Integrate the concepts of price and output decisions of business firms
- 4. Appreciate the importance of market structures and implement appropriate price and output decisions
- 5. Assess the financial statements of a firm and the financial performance of the firm through the financial statements
- 6. Measure operating, investing and financial performance of a firm

UNIT-I

Introduction To Managerial Economics - Managerial Economics - Definition, nature and scope — contemporary importance of Managerial Economics - Demand Analysis: Determinants- Law of Demand - Elasticity of Demand. Significance —Types — measurement of elasticity of demand - Demand forecasting- factors governing demand Forecastingmethods of demand forecasting —Relationship of Managerial Economics with Financial Accounting and Management.

UNIT-II

Theory Of Production and Cost Analysis -Production Function – Short-run and long- run production - Isoquants and Isocosts, MRTS, least cost Combination of inputs - Cobb-Douglas production function - laws of returns - Internal and External Economies of scale .

Cost Analysis: Cost concepts - Break-Even Analysis (BEA) – Managerial Significance and limitations of BEA - Determination of Break Even Point (Simple Problems).

UNIT-III

Introduction to Markets and New Economic Environment - Market structures: Types of Markets - Perfect and Imperfect Competition - Features, Oligopoly -Monopolistic competition. Price-Output determination - Pricing Methods and Strategies - New Economic Environment- Economic systems - Economic Liberalization - Privatization and Globalization

UNIT-IV

Capital and Capital Budgeting - Concept of Capital - Over and under capitalization – Remedial measures - Sources of Short term and Long term capital - Estimating Working Capital requirement – Capital budgeting – Features of Capital Budgeting proposals – Methods and Evaluation of Capital budgeting – Pay Back Method – Accounting Rate of Return (ARR) – Net Present Value (NPV) – Internal Rate Return (IRR) Method (simple problems)

UNIT-V

Introduction to Financial Accounting and Analysis - Financial Accounting — Concept - emerging need and importance - Double-Entry Book Keeping-Journal - Ledger — Trial Balance - Financial Statements - - Trading Account — Profit & Loss Account — Balance Sheet (with simple adjustments). Financial Analysis — Ratios — Techniques — Liquidity, Leverage, Profitability, and Activity Ratios (simple problems).

TEXT BOOKS

- 1. Aryasri, Managerial Economics and Financial Analysis, 4/e, TMH,2009.
- 2. Varshney & Maheswari, Managerial Economics, Sultan Chand, 2009.

- 1. PremchandBabu, Madan Mohan: Financial Accounting and Analysis, Himalaya, 2009
- 2. S.A. Siddiqui and A.S. Siddiqui: *Managerial Economics and Financial Analysis*, New Age International, 2009.
- 3. Pearson Joseph G. Nellis and David Parker: *Principles of Business Economics*, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage, 2009.
- 5. H.L.Ahuja: *Managerial Economics*, S.Chand, 3/e,2009

II B.Tech. – II Sem.

L	T	P	C
-	-	3	1.5

(20CS0902) ARTIFICIAL INTELLIGENCE LAB

COURSE OBJECTIVES

The objective of the course is to

- 1. To provide a basic foundation on python Tool.
- 2. To Build various applications of AI such as Back propagation algorithm, Hangman game.
- 3. Explore the scope, advantages as well as limitations of intelligent systems.
- 4. Experiment with different machine learning concepts such as Deep Learning and Reinforcement Learning
- 5. To expose students to the AI-intensive computing and information system frameworks.

COURSE OUTCOMES

On successful completion of the course, the students will be able to

- 1. Identify various domains in which AI can be applied
- 2. Analyze the standard logics and algorithm of AI
- 3. Implementing the Sentiment Analysis
- 4. Classify the properties of images
- 5. Understand the python programming in various domains
- 6. *Understand and implement the NLTK*

LIST OF EXPERIMENTS

- 1. A) Write a python program to implement List operations (Nested List, Length, Concatenation, Membership, Iteration, Indexing and Slicing)?
 - B) Write a python program to implement List methods (Add, Append, Extend & Delete).
- 2. Write a program to implement Hangman game using python.
- 3. Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.
- 4. Write a python program to remove stop words for a given passage from a text file using NLTK?
- 5. Write a python program to implement stemming for a given sentence using NLTK?
- 6. Write a python program to POS (Parts of Speech) tagging for the give sentence using NLTK?
- 7. Write a python program to implement Lemmatization using NLTK?

- 8. Write a python program to for Text Classification for the give sentence using NLTK?
- 9. Read any image that you want and save it in gray scale. Now rotate the image that you have read. Write the image to the disk.
- 10. For the image given below (provided with the lab handout), apply the connected component labelling and count the total number of white objects. First threshold the images and then do connected component analysis.

- 1. AurélienGéron, Hands on Machine Learning with Scikit-Learn and Tensor Flow [Concepts, Tools, and Techniques to Build Intelligent Systems], Published by O'Reilly Media, 2017.
- 2. Build an AI Assistant with Wolfram Alpha and Wikipedia in Python. https://medium.com/@salisuwy/build-an-ai-assistant-with-wolfram-alpha-wikipedia-in-python-d9bc8ac838fe
- 3. Joseph Howse, Prateek Joshi, Michael Beyeler Opencv_ Computer Vision Projects with Python- Packt Publishing (2016). Curated Datasets on Kagglehttps://www.kaggle.com/datasets

II B.Tech. - II Sem.

L	T	P	С
-	-	3	1.5

(20CS0509) OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

COURSE OBJECTIVES

The objectives of this course

- 1. Illustrate software design, implementation, and testing using Java.
- 2. Introduce object-oriented design techniques and problem solving.
- 3. Emphasize development of secure, well-designed software projects that solve practical real-world problems.
- 4. Identify the threads through multi thread programming

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to:

- 1. Understand integrated development environment to write, compile, run, and test simple object-oriented Java programs
- 2. Read and make elementary modifications to Java programs that solve real-world problems
- 3. Validate input in a Java program
- 4. Identify and fix defects and common security issues in code.
- 5. Execute a Java program using Javadoc
- 6. Develop a Java program using Java Swings

LIST OF PROGRAMS

- 1. Write a java program to read and write different types of data through keyboard and display them on console.
- 2. a) Write a java program to find Factorial of given number.
 - b) Write a java program to find Fibonacci series of given number.
- 3. a) Write a java program to display prime number series up to N.
 - b) Write a java program to find the maximum and minimum of N array elements.
- 4. a) Create a user defined package and import it into a java program.
 - b) Write a java program to implement an interface using your own example.
- 5. Write a Java program that prints all real and imaginary solutions to the quadratic equation $ax^2 + bx + c = 0$. Read in a, b, c and use the quadratic formula.
- 6. Write a java program to illustrate Constructor Overloading.
- 7. Write a Java program that creates three threads. First thread displays —Good Morning, every one second, the second thread displays Hello, every two seconds and the third thread displays Welcome every three seconds.

- 8. Write a java program to accept a string from user and display number of vowels, consonants, digits and special characters present in each of the words of the given text
- 9. Write a java program to create your own exception subclass and how to handle it.
- 10. Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication.
- 11. Write a java program to show multiple type parameters in Java Generics.
- 12. Write a java program to use swings to create frame and buttons.

TEXT BOOKS

- 1. H.M.Dietel and P.J.Dietel, *Java How to Program*, Sixth Edition, Pearson Education/PHI.
- 2. Herbert Schildt, Java-The Complete Reference, TMH, 8th Edition.

- 1. Y.Daniel Liang, *Introduction to Java programming*, Pearson Education, Sixth Edition.
- 2. Cay Horstmann, *Big Java*, Wiley Student Edition, Wiley India Private Limited, 2nd Edition.
- 3. J.Dean & R.Dean, *Introduction to Programming with Java*, McGraw Hill.

II B.Tech. – II Sem.

L	T	P	С
-	-	3	1.5

(20CS0515) LINUX PROGRAMMMING LAB

COURSE OBJECTIVES

The objective of the course is to

- 1. To demonstrate the basic knowledge of Linux commands and file handling utilities by using Linux shell environment.
- 2. To evaluate the concept of shell scripting programs.
- 3. To create the directory, how to change and remove the directory.
- 4. Use the following Bourne Shell constructs: test, if then, if then else, if then elif, for, while, until, and case.
- 5. Demonstrate how to use the following Bourne Shell commands: cat, grep, ls, more, ps, chmod etc.,
- 6. Make a Shell script executable.

COURSE OUTCOMES (COs)

On successful completion of the course, the students will be able to

- 1. Understand and make use of various LINUX commands
- 2. Create file systems and directories and operate them
- 3. Explain LINUX commands and shell programs
- 4. Demonstrate the inner workings of LINUX-like operating systems.
- 5. Write Regular expressions for pattern matching and apply them to various filters for a specific task
- 6. Analyze a given problem and apply requisite facets of SHELL programming in order to devise a SHELL script to solve the problem

LIST OF EXPERIMENTS:

- 1. Demonstrate the following commands
 - i. Date Command
 - ii. Calendar Command
 - iii. Basic Calculator Commands
 - iv. Print Command
 - v. Script Command
 - vi. Manual Command
- 2. Demonstrate the following commands
 - i. Use the appropriate command to determine your login shell
 - ii. Use the /etc/passwd file to verify the result of step i.
 - iii. Use the who command and redirect the result to a file called myfile1. Use the more command to see the contents of myfile1.

- iv. Use the date and who commands in sequence (in one line) such that the output of date will display on the screen and the output of who will be redirected to a file called myfile2. Use the more command to check the contents of myfile2.
- 3. Demonstrate the following Commands
 - i. To create directory
 - ii. To change directory permission
 - iii. To create sub directory
 - iv. To delete directory
 - v. To list the files and directories
- 4. Use vi editor to create a file called myfile.txt
 - i. open the file created
 - ii. Add some text
 - iii. Change some text
 - iv. Delete some text
 - v. Apply Cursor move commands
 - vi. Save the Changes
- 5. i. Use the cat command to create a file containing the following data. Call it student_data use tabs to separate the fields.
 - 101 Ravi 15.65102 Ramu 26.27103 Sita 36.15
 - 104 Raju 21.86
 - ii. Use the cat command to display the file, student_data.
 - iii. Use the vi command to correct any errors in the file, student_data
 - iv. Use the sort command to sort the file student_data according to the first field. Call the sorted file my table
 - v. Print the file student_data
 - vi. Use the cut and paste commands to swap fields 2 and 3 of student_data. Call it my table (same name)
 - vii. Print the new file, student_data.
- 6. i. Write a shell script that takes a command –line argument and reports on whether it is directory, a file, or something else.
 - ii. Write a shell script that accepts one or more file name as arguments and converts all of them to uppercase, provided they exist in the current directory.
- 7. i. Write a shell script that accepts a file name starting and ending line numbers as arguments and displays all the lines between the given line numbers.
 - ii. Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it.
- 8. i. Write a shell script that computes the gross salary of a employee according to the following rules:
 - a) If basic salary is < 1500 then HRA =10% of the basic and DA =90% of the basic.

- b) If basic salary is >=1500 then HRA =Rs500 and DA=98% of the basic The basic salary is entered interactively through the key board.
- ii. Write a shell script that accepts two integers as its arguments and computers the value of first number raised to the power of the second number.

TEXT BOOKS

- 1. N.Matthew,R.Stones, Wrox *Beginning Linux Programming* 4 th Edition, Wily India Edition.
- 2. N.B. Venkateswarlu Advanced Unix Programming, BS Publications.

- 1. M.G. Venkatesh Murthy *Unix & Shell Programming*, Pearson Education
- 2. Ellie Quigley *Unix shells by example*,4th Edition, Pearson Education.

II B.Tech. - II Sem.

(20CS0547) ANIMATION DESIGN (SKILL ORIENTED COURSE)₂

COURSE OBJECTIVES

The objective of the course is

- 1. To enable the students to be multimedia literates, which will prepare them to actively participate in various media related activities for strengthening their skills?
- 2. The Course will have scope for skill development in the field of Electronics and Print Media Production, which in turn make them employable in the media industry.

COURSE OUTCOMES (COs)

Students will be able to

- 1. Understand fundamentals of animations and present a visual concept to a target audience.
- 2. Design and implementation of animation projects.
- 3. Develop and execute believable animation sequences.
- 4. Create animation sequences that employ basic cinematography principles.
- 5. Apply performance theory to the creation of animation. Produce layouts and backgrounds with attention to composition, perspective and color.
- 6. Describe computer skills and appropriate digital asset management techniques to function effectively within a production pipeline.

CONTENTS:

- 1. Introduction to Animation, Traditional Animation, Stop Motion Animation, 3D and 2D Animation
- 2. Installation of Blender Software
- 3. Blender Interface, Working with Viewports (windows), Creating and Editing Objects
- 4. Blender Render Engines, Materials and Textures, Setting Up a World, Lighting and Cameras, Render Settings
- 5. Ray-Tracing (mirror, transparency, shadows), Animation Basics, Adding 3D Text
- 6. NURBS and Meta Shape Basics, Modifiers, Particle Systems and Interactions
- 7. Child-Parent Relationships, Working With Constraints, Armatures (bones and skeletons) Relative Vertex Keys (shape keys), Object Physics
- 8. Creating Springs, Screws, Gears and other Add-On Shapes

9. Video Motion Tracking, Game Engine Basics (real-time animation), Video Sequence Editor

10. Production Pipeline, Pre-Production and Storyboarding

TEXT BOOK

1. James Chronister, *Blender Basics – Classroom Tutorial Book*, published by Blender Nation, 5th Edition, 2017.

REFERENCES

- 1. SteveRoberts ,Character Animation Fundamentals: Developing Skills for 2D and 3D Character.
- 2. KitLaybourne *The Animation Book: A Complete Guide to Animated Filmmaking-from Flip-books to Sound Cartoons to 3-D Animation*

WEB REFERENCES

- 1. http://www.digitaltutors.com/subject/2d-animation-tutorials
- 2. http://webneel.com/2d-animation-best
- http://www.lynda.com/Flash-Professional-tutorials/2D-Animation-Principles/158769- 2.html
- 4. http://en.wikipedia.org/wiki/Traditional_animation
- 5. http://animate-it.com/get-animating/how-to-create-a-hand-drawn-animated-movie/
- 6. http://en.wikipedia.org/wiki/Cinemagraph
- 7. http://www.tripwiremagazine.com/2011/07/cinemagraphs.html
- 8. http://giphy.com/search/cinemagraph
- 9. https://www.open-of-course.org/courses/course/view.php?id=84 10.http://www.cdschools.org/blenderbasics

R20

B.Tech - CAD

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

L T P C 3 - 3

III B. Tech - I Sem.

(20CS1101) INTRODUCTION TO DATA SCIENCE

COURSE OBJECTIVES

The objectives of this course:

- 1. Develop practical data analysis skills, which can be applied to practical problems.
- 2. Learn how to carry out a range of commonly used statistical methods including regression, classification, clustering.
- 3. Explore data-sets to create testable hypotheses and identify appropriate statistical tests.
- 4. To introduce the tools, technologies & programming languages this is used in day to day analytics cycle.
- 5. To discuss models in time series and text analysis.

COURSE OUTCOMES (COs)

On successful completion of this course, student will be able to:

- 1. Understand the basic concepts of Data Science and the skill sets needed for data analysis
- 2. Illustrate appropriate statistical Methods for Evaluation tests
- 3. Discuss in depth of association rules and their applicability to various problem domains
- 4. Analyze and implement the types of Regression and Classification techniques available for data analysis
- 5. Classify clustering techniques and their applicability to various problem domains
- 6. Demonstrate different models in time series and text analysis

UNIT-I

Introduction to Data Science: Need for data science – benefits and uses – facets of data – data science process – setting the research goal – retrieving data – cleansing, integrating, and transforming data – exploratory data analysis – build the models – presenting and building applications.

UNIT-II

Statistical Methods for Evaluation: Hypothesis Testing, Difference of Means, Wilcoxon Rank-Sum Test, Type I and Type II Errors.

Association Rules: Overview, Apriori Algorithm, Evaluation of Candidate Rules - Applications of Association Rules ,An Example: Transactions in a Grocery Store, Validation and Testing, Diagnostics

UNIT-III

Regression: Linear Regression, Logistic Regression, Reasons to Choose and Cautions, Additional Regression Models

Classification: Decision Trees, Na'ive Bayes, Diagnostics of Classifiers, Additional Classification Methods

UNIT-IV

Clustering: Overview of Clustering, K-means, Additional Algorithms

Time Series Analysis: Overview of Time Series Analysis, ARIMA Model, Additional Methods

UNIT-V

Text Analysis: Text Analysis Steps, Collecting Raw Text, Representing Text, Term Frequency- Inverse Document Frequency (TFIDF), Categorizing Documents by Topics, Determining Sentiments – Gaining Insights.

TEXT BOOKS

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, *Introducing Data Science*, Manning Publications, 2016.
- 2. David Dietrich, Barry Heller & Beibei Yang, *Data Science and Big Data Analytics: Discovering, Analyzing*, Willey Publications.

- 1. Dr. Mark Gardener, *Beginning R the statistical programming language*, John Wiley &Sons, Inc. 2012.
- 2. Richard Cotton, Learning R: A Step-by-Step Function Guide to Data Analysis.
- 3. Peng, R. D., & Matsui. E, *The Art of Data Science. A Guide for Anyone Who Works with Data*, Sky brude Consulting, 2015

R20

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

III B.Tech.-ISem.

L	T	P	C
3	-	-	3

(20CS0517) DATAWAREHOUSING AND DATAMINING

COURSE OBJECTIVES

The objectives of this course:

- 1. Know the basic concepts and principles of data warehousing and data mining
- 2. Learn pre-processing techniques and data mining functionalities.
- 3. Learn and create multidimensional models for data warehousing
- 4. Study and evaluate performance of Frequent Item sets and Association Rules.
- 5. Understand and compare different types of classification and clustering algorithms

COURSE OUTCOMES: (COs)

On successful completion of this course, the student will be able to

- 1. Understand the basic concepts of data warehouse and data mining
- 2. Apply pre-processing techniques for data preprocessing
- 3. Implement the OLAP operations and data warehouse.
- 4. Evaluate and Analyze performance of algorithms for Association Rules
- 5. Analyze Classification and prediction Algorithms
- 6. Describe the clustering methods and develop data mining applications

UNIT-I

Introduction: Motivation to Data Mining, Importance, Kinds of Data that can be mined, Data Mining Functionalities, Classification of Data mining Systems, Data Mining Task Primitives, Major Issues in Data Mining.

Data Preprocessing: Need for Preprocessing the Data, Data Cleaning, Data Integration and Transformation, Data Reduction, Data Discretization and Concept Hierarchy Generation.

UNIT-II

Data Warehouse and OLAP Technology: An Overview Data Warehouse fundamentals – A Multidimensional Data Model: From Tables and Spreadsheets to Data Cubes, Stars, Snowflakes, and Fact Constellations, Measures: Their Categorization and Computation, Concept Hierarchies, OLAP Operations in Multidimensional Data Model, A Starnet Query Model for Querying Multidimensional Databases - Data Warehouse Architecture, Data Warehouse Implementation, From Data Warehouse to Data Mining, Attribute Oriented Induction.

UNIT-III

Mining Frequent Patterns, Associations and Correlations: Basic Concepts and a Road Map, Efficient and Scalable Frequent Item Set Mining Methods, Mining Various Kinds of Association Rules, From Association Mining to Correlation Analysis, Constraint based Association Mining.

UNIT-IV

Classification and Prediction: Classification and Prediction fundamentals, Issues Regarding Classification and Prediction, Classification by Decision Tree Induction, Bayesian Classification, Rule-Based Classification.

Prediction: Prediction, Accuracy and Error Measures, Evaluating the Accuracy of a Classifier or Predictor.

UNIT-V

Cluster Analysis: Basics of Cluster Analysis, Types of Datain Cluster Analysis, A Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical Methods, Density Based Methods, Grid Based Methods, Model Based Clustering Methods, Outlier Analysis.

TEXTBOOKS

- 1. Jiawei Hanand Micheline Kamber, *Data Mining: Concepts and Techniques*, Elsevier, Second Edition, 2010.
- 2. Prabhu C.S.R., *Data Warehousing: Concepts, Techniques, Products and Applications*, Prentice Hall of India, 2011

- 1. Pang-Ning Tan, Michael Steinbachand VipinKumar, *Introduction to Data Mining*, Pearson Education.
- 2. Arun K Pujari, Data Mining Techniques, University Press, 2001.
- 3. Sam Aanhory & Dennis Murray, *Data Warehousing in the Real World*, Pearson Edn Asia
- 4. K.P. Soman, S. Diwakar, V. Ajay, *Insight into Data Mining*, PHI, 2008.

R20

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

III B.Tech.-ISem.

L	T	P	С
3	-	_	3

(20CS0518) SOFTWARE ENGINEERING

COURSE OBJECTIVES

The objectives of this course is to

- 1. Illustrate the Software Development Models
- 2. Explain Software Requirements Engineering Process and SRS document
- 3. Illustrate the importance of modeling and modeling languages
- 4. Explain importance of Design Interface
- 5. Explain various testing methodologies

COURSE OUTCOMES (COs)

On successful completion of the course, the students will be able to

- 1. Understand the concepts software process models
- 2. Describe the requirements and specification of software.
- 3. Illustrate the design process and architectural design
- 4. Design user interface and web applications using design concept
- 5. Understand the basic testing procedures
- 6. Test the applications manually by applying different testing methods and automation tools.

UNIT-I

INTRODUCTION: Introduction to Software Engineering, Software Process, Software Myths, A generic view of process, A layered Technology, A Process Framework, Software Process Models., Unified process

INTRODUCTION TO AGILITY: Agility, Agile Process, Extreme Programming, Other Agile Process Models.

UNIT-II

REQUIREMENTS ANALYSIS AND SPECIFICATION: Requirements Engineering, Establishing the ground work, Eliciting Requirements, Developing Use Cases, Building the requirements model, Negotiating Requirements, Validating Requirements. Requirements Modeling Scenarios, Information and Analysis Classes: Requirements Analysis, Scenario-Based Modeling, UML Models that Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling, Behavioral Models

UNIT-III

DESIGN CONCEPTS: The Design Process, Design Concepts, Design Model.

ARCHITECTURAL DESIGN: Software Architecture, Architecture Genres, Architecture Styles, Architectural Design, Assessing Alternative Architectural Designs.

UNIT-IV

USER INTERFACE DESIGN: The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps.

WEB APP DESIGN: Introduction, Web App Interface Design, Aesthetic Design, Content Design, Architecture Design, Navigation Design, Component-Level Design

UNIT-V

TESTING: A strategic Approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Validation Testing, System Testing, The Art of Debugging.

TESTING CONVENTIONAL APPLICATIONS: Software Testing Fundamentals, White-Box Testing, Black-Box Testing, Testing for Specialized Environments, Architectures and Applications, Object-Oriented Testing Strategies, Object-Oriented Testing Methods, Testing Methods Applicable at the Class level, Interclass Test-Case Design.

TEXTBOOK

1. Roger S.Pressman, *Software engineering- A practitioner's Approach*, McGraw-Hill International Edition, seventh edition, 2001.

REFERENCES

- 1. Ian Sommerville, Software Engineering, 8th Edition, Pearson Education, 2008.
- 2. Richard Fairley, Software Engineering Concepts, McGraw Hill, 2004.

Page 89 of 147

III B.Tech.-I Sem.

(20CS0537) CLOUD COMPUTING

(Professional Elective Course-P)			С	
	3	-	-	3

COURSE OBJECTIVES

The objectives of this course:

- 1. This course provides an insight into what is cloud computing and the various services cloud is capable.
- 2. To provide skills and knowledge about operations and management in cloud technologies so as to implement large scale systems.
- 3. To provide skills to design suitable cloud infrastructure that meets the business services and customer needs.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Understanding the systems, protocols and mechanisms to support cloud computing.
- 2. Illustrate different models and services in the cloud environment.
- 3. Differentiate the types of virtualization and their implementation in cloud
- 4. Discuss the phases in application migration to cloud
- 5. Describe various practices in security applications for cloud computing.
- 6. Summarize the knowledge of mobile cloud computing.

UNIT -I

Introduction:Evolution of Distributed computing: Scalable computing over the Internet – Technologies for network based systems – clusters of cooperative computers – Overview of Grid Architecture –service oriented architecture – Challenges in cloud computing - Exploring the Cloud Computing Stack - Fundamental Cloud Architectures

UNIT - II

Service Delivery and Deployment Models: Service Models (XaaS): Infrastructure as a Service (IaaS) - Platform as a Service (PaaS) - Software as a Service(SaaS) - Deployment Models: Types of cloud - Public cloud - Private cloud - Hybrid cloud - Pros and Cons of cloud computing - Service level agreements - Types of SLA - Lifecycle of SLA- SLA Management

UNIT -III

Virtualization as Foundation of Cloud: Implementation levels of virtualization – virtualization structure – virtualization of CPU, Memory and I/O devices – virtual clusters and Resource Management - Virtualization for data center automation - Migrating Application to Cloud, Phases of Cloud Migration

UNIT -IV

Cloud Infrastructure Security: Authentication and Authorization methods -network, host and application level — aspects of data security, provider data and its security, Identity and access management architecture, IAM practices in the cloud, SaaS, PaaS, IaaS availability in the cloud, Key privacy issues in the cloud.

UNIT - V

Mobile Cloud Computing: Definition of Mobile Cloud Computing, Architecture of Mobile Cloud Computing, Benefits of Mobile Cloud Computing, Mobile Cloud Computing Challenges

TEXT BOOKS

- 1. Rajkumar Buyya, James Broberg and AndzejM. Goseinski, *Cloud Computing: Principles and Paradigms*, 2011, Wiley.
- 2. Kai Hwang, Geoffery C.Fox, Jack J.Dongarra, *Distributed and Cloud Computing*, 2012, Elsevier.
- 3. Kailash Jayaswal, Jagannath Kallakurchi, Donald J. Houde, Dr. Deven Shah, *Cloud Computing Black Book Dreamtech* Publication, Kogent Learning Solutions

REFERENCES

- 1. Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, *Cloud Computing : A Practical Approach*, Tata McGraw Hill, rp2011.
- 2. GautamShroff, Enterprise Cloud Computing, Cambridge, University Press, 2010.
- 3. John W.Rittinghouse, James F.Ransome, *Cloud Computing: Implementation, Management and Security*, CRC Press, rp2012.
- 4. George Reese, Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, O'Reilly, SPD, rp2011.
- 5. Tim Mather, SubraKumaraswamy, ShahedLatif, *Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance*, O'Reilly, SPD, rp2011.

Page 91 of 147

III B.Tech.-I Sem.

L	T	P	C
3	-	-	3

(20CS1109) NEURAL NETWORKS (Professional Elective Course-I)

COURSE OBJECTIVES

The objectives of this course:

- 1. Understand components of artificial neural networks and model a Neuron and Express both Artificial Intelligence and Neural Network
- 2. Analyze ANN learning, Error correction learning, Memory-based learning, Hebbian learning, Competitive learning and Boltzmann learning
- 3. Implement Simple perception, Perception learning algorithm, Modified Perception learning algorithm, and Adaptive linear combiner, Continuous perception, learning in continuous perception.
- 4. Analyze the limitation of Single Layer Perceptron and Develop MLP with 2 hidden layers, Develop Delta learning rule of the output layer and Multilayer feed forward neural network with continuous perceptions

COURSE OUTCOMES

On Successful completion of this course, the student will be able to

- 1. Understanding the Neuron and Neural Network, ANN learning, and its applications.
- 2. Describe the different types of learning processes
- 3. Perform Pattern Recognition, Linear classification.
- 4. Develop different single layer Perception learning algorithms
- 5. Illustrate different multiple layer Perception learning algorithms
- 6. Demonstrate on different Radial basis Function model and Recurrent perceptron

UNIT-I

Introduction to Neural Networks: Neural Network, Human Brain, Models of Neuron, Neural networks viewed as directed graphs, Biological Neural Network, Artificial neuron, Artificial Neural Network architecture, ANN learning, analysis and applications, Historical notes.

UNIT-II

Learning Processes: Introduction, Error correction learning, Memory-based learning, Hebbian learning, Competitive learning, Boltzmann learning, credit assignment problem, learning with and without teacher, learning tasks, Memory and Adaptation.

UNIT-III

Single layer Perception: Introduction, Pattern Recognition, Linear classifier, Simple perception, Perception learning algorithm, Modified Perception learning algorithm, Adaptive linear combiner, Continuous perception, Learning in continuous perception, Limitation of Perception

UNIT-IV

Multi-Layer Perceptron Networks: Introduction, MLP with 2 hidden layers, Simple layer of a MLP, Delta learning rule of the output layer, Multilayer feed forward neural network with continuous perceptions, generalized delta learning rule, Back propagation algorithm

UNIT-V

Radial basis Function-Recurrent perceptron

Radial basis Functions-Information processing of an RBF Network-Training of RBF Networks-Growing of RBF Networks-Compare multilayer perceptron's and RBF Recurrent perceptron-like Networks-Jordan Networks-Elman Network-Training Recurrent Networks-Unfolding in time-Teacher forcing-Recurrent back propagation.

TEXT BOOKS

- 1. Gunjan Goswami, *Introduction to Artificial Neural Networks*, S.K. Kataria & Sons. 2019
- 2. S. Sivanandam, Introduction to Artificial Neural Networks, 2019
- 3. David Kriesel, A Brief Introduction to Neural Networks, dkriesel.com, 2005

REFERENCES

- 1. Simon Haykins, *Neural Network- A Comprehensive Foundation, Pearson Prentice Hall*, 2nd Edition, 1999. ISBN-13:978-0-13-147139-9/ISBN-10:0-13-147139-2
- 2. Zurada and Jacek M, *Introduction to Artificial Neural Systems, West Publishing Company*, 1992, ISBN: 9780534954604
- 3. Vojislav Kecman, *Learning & Soft Computing, Pearson Education*, 1st Edition, 2004, ISBN:0-262-11255-8
- 4. M T Hagan, H B Demoth, M Beale, *Neural Networks Design*, Thomson Learning, 2002. ISBN-10:0-9717321-1-6/ISBN-13:978-0-9717321-1-7

Page 93 of 147

III B.Tech.-I Sem.

L	T	P	C
3	-	-	3

(20CS1110) USER INTERFACE TECHNOLOGIES (Professional Elective Course-I)

COURSE OBJECTIVES

The objectives of this course:

- 1. Introduce the basic web concepts and Internet Protocols
- 2. Explain client side scripting with Javascript and DHTML
- 3. Introduce server side programming with Javaservlets, JSP and PHP
- 4. Implement web services through XML.

COURSE OUTCOMES (COs)

Upon Completion of the course the students will be able to

- 1. Understand and Create dynamic web pages using HTM5 and CSS3
- 2. Design various framework using RWD, Bootstrap to construct websites
- 3. Implement client side scripting using JavaScript and server side programming with Java Servlets
- 4. Understanding the concept of JS frame work, http
- 5. Develop the internet applications using AngularJS
- 6. Understanding the concept of DOM interface and to develop various web application using Ajax

UNIT-I

HTML5: Introduction Features of HTML5 – Semantic Tags – New Input Elements and tags - Media tags (audio and video tags) – Designing Graphics using Canvas API - Drag and Drop features – Geo location API

CSS3: Introduction— Features of CSS3 — Implementation of border radius, box shadow, image border, custom web font, backgrounds - Advanced text effects (shadow) - 2D and 3D Transformations

UNIT-II

Responsive Design: Introduction to RWD Techniques – Fluid Layout, Fluid Images and Media queries - Introduction to RWD Framework

Twitter Bootstrap – Bootstrap Background and Features - Getting Started with Bootstrap - Demystifying Grids – Off Canvas - Bootstrap Components - JS Plugins – Customization

UNIT-III

Client-Side Programming: The JavaScript Language-History and Versions Introduction JavaScript in Perspective-Syntax-Variables and Data Types-Statements-Operators-Literals-Functions-Objects-Arrays-Built-in Objects-JavaScript Debuggers.

Server-Side Programming: Java Servlets - Architecture - Overview - A Servlet - Generating Dynamic Content - Life Cycle - Parameter Data - Sessions - Cookies - URL Rewriting - Other Capabilities

UNIT-IV

Node JS (Server-Side JS Framework) Introduction – Architecture – Feature of Node JS Installation and Setup - Creating web servers with HTTP (Request & Response) – Event Handling - GET & POST implementation - Connect to SQL Database using Node JS – Implementation of CRUD Operations.

UNIT-V

AngularJS: Introduction to Angular 4.0 - Needs & Evolution – Features – Setup and Configuration. jQuery Introduction -Selectors – jQuery HTML – Animations – Effects – Event Handling – DOM jQuery DOM Traversing, DOM Manipulation – AJAX: Introduction -Architecture of AJAX- jQuery AJAX

TEXTBOOKS

- 1. Jeffrey C. Jackson, Web Technologies A Computer Science Perspective, Pearson Education, 2006
- 2. Jason Gilmore, *Beginning PHP and MySQL*, 3rd Edition, A press Publications (Dreamtech.).

- 1. Lee Babin, Nathan A Good, Frank M. Kromannand Jon Stephens, *PHP 5 Recipes A problem Solution Approach*, A press publisher,1st Edition 2005.
- 2. Deiteland Deiteland Nieto, Prentice Hall, *Internet and World Wide Web-How to Program*, 5th Edition, 2011.
- 3. Herbert Schildt, *Java-The Complete Reference*, Eighth Edition, McGraw Hill Professional, 2011.

R20

(AUTONOMOUS)

B.Tech - CAD

III B.Tech. - I Sem.

L	T	P	C
3	-	-	3

(20CE0170) FUNDAMENTALS OF CIVIL ENGINEERING (OPEN ELECTIVE-I)

(Common to all branches)

COURSE OBJECTIVES

The objectives of this course

- 1. To impart basic knowledge on Civil Engineering.
- 2. To familiarize the materials and measurements used in Civil Engineering.
- 3. To provide the exposure on the fundamental elements of civil engineering structures.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Explain the usage of construction material and proper selection of construction materials
- 2. Attain the knowledge of building planning, orientation and construction of buildings and Identify the cost effective construction technique methods for different buildings.
- 3. Understand various basic methods and techniques of surveying and its applications
- 4. Computation of areas, volumes and drawing of contours from the field data and contour map drawings.
- 5. Identify the types of earthquakes and its Magnitude of their intensity and Improving earthquake, Cyclone and Fire resistance of small & tall buildings.
- 6. Discuss the disaster mitigation, rescue and relief measures and also Rehabilitation and Reconstruction of damaged structures.

UNIT – I

Civil Engineering Materials: Traditional materials - Stones, Bricks, Lime, Cement & Timber - Building Materials - Glass, Plastics, Paints, Solid and hallow concrete blocks, Roofing and Flooring tiles - Building Metals - Ferrous metals, Aluminium & Copper - Mortars - Cement mortar, Lime mortar, Mud mortar & Special mortar - Concrete - Plain cement concrete, Reinforced cement concrete & Prestressed concrete.

UNIT - II

Building Construction: Building planning - Elements of a building, Basic requirements of a building, Planning, Planning suitable orientation, Planning for energy efficiency & Planning for suitable utility - Foundations - Requirements of good foundation & Types of foundations - Super structures - Types of super structures based on the method of load transfer, Walls, Stone masonry & Brick masonry - Cost effective construction techniques - Minimum standards, Approach to cost effective mass housing schemes & Cost effective construction techniques

UNIT – III

Surveying : Introduction to surveying - Object and uses of surveying, Primary divisions in surveying, Fundamental principles of surveying, Classification of surveying, Types of graphical scales & Units of measurements - Linear measurements and chain surveying - Methods of Linear Measurements, Instruments used in Chaining & Chain Surveying - Compass surveying - Types of compass, Method of using a compass & Local attraction - Levelling - Object and uses of levelling, Terms used in levelling & Levelling instruments

UNIT - IV

Mapping and Sensing: Mapping and contouring - Mapping, Contours & methods of contouring - Areas and Volumes - Computation of areas from field notes, Computing areas from maps & Computation of volumes.

UNIT - V

Disaster Resistant Building: Disaster resistant buildings - Earthquakes resistant buildings, Types of earthquakes, Terminology, Magnitude and intensity, Seismograph, I.S: Codes on earthquake resistant building design, Improving earthquake resistance of small buildings, Improving earthquake resistance of tall buildings, Cyclone resistant buildings & Fire resistant building - Disaster management and planning - Disaster prevention strategy, Early warning system, Disaster preparedness, Disaster mitigation, Disaster rescue and relief measures, Disaster resettlement& Rehabilitation and Reconstruction.

TEXT BOOKS

- 1. S.S. Bhavikatti, *Basic Civil Engineering*, New Age International (P) Limited Publishers, First Edition, 2018
- 2. Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, *Basic Civil Engineering*, Lakshmi Publications(P) Ltd., New Delhi, Tenth Edition, 2012

- 1. Rangawala, *Building Construction*, Charotar Publishing House Pvt Ltd, 41st Edition, 2014
- 2. N.L. Arora and B.L. Gupta, *Building Construction*, Satyaprakasan Publications, New Delhi, 2014
- 3. Sandeep Mantri, *Practical Building Construction and its Management*, Satya Publisher, New Delhi
- 4. Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, *Surveying-Vol I*, Lakshmi Publications(P) Ltd., New Delhi, Seventeen Edition, 2016

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

III B.Tech. - I Sem.

L	T	P	C
3	-	-	3

(20EE0227) GENERATION OF ENERGY FROM WASTE (OPEN ELECTIVE-I)

(Common to all branches)

COURSE OBJECTIVES

The objectives of this course:

- 1. To understand different types of waste as fuel
- 2. To introduce Pyrolysis methods and conversion processes
- 3. To understand gasification methods for biomass
- 4. To learn concepts of biomass resources, combustion types and biogas plant technology

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Analyse agro based, forest residue and industrial waste conversion processes.
- 2. Manufacture of Pyrolytic oils and gases
- 3. Manufacture of charcoal, yields and applications
- 4. Understand various types of gasifiers operation
- 5. Understand inclined and fluidized bed combustors operation
- 6. Understand types of biogas plants and biomass energy programme in India

UNIT- I

Introduction to Energy from waste: Classification of waste as fuel – Agro based- Forest residue- Industrial waste- MSW- conversion devices- Incinerators- Gasifiers-Digestors.

UNIT- II

Bio-mass Pyrolysis: Pyrolysis- Types- Slow-Fast- Manufacture of Charcoal- methods- yields and application. Manufacture of Pyrolytic oils and gases – yields and applications.

UNIT-III

Biomass Gasification: Gasifiers- Fixed bed system- Downdraft and Updraft gasifiers- Fluidized bed gasifiers- construction and operation- Gasifier burner arrangement for thermal heating.

UNIT-IV

Biomass Combustion: Biomass stoves- Types- Inclined combustors- Fluidized bed combustors- construction and operation of above biomass combustors.

UNIT- V

Properties of Biogas: Biogas plant Technology and status – Biomass resources and their classification- Biomass conversion processes- thermo chemical conversion – Direct Combustion-

Biomass gasification- Pyrolysis and liquefaction – bio-chemical conversion- anaerobic digestion- Types of biogas plants- applications-Biomass Energy Programme in India.

TEXT BOOKS

- 1. Desai Ashok V, Non-Conventional Energy, Wiley Eastern Ltd 2010.
- 2. Khandelwal K.C. and Mahdi SS, *Biogas Technology A Practical Hand Book*, Vol I & II. Tata Mc Graw Hill Publishing Co Ltd.,2008.

REFERENCES

- 1. Challal D.S., Food, Feed and Fuel from Biomass, IBH Publishing Co Pvt Ltd.,1991.
- 2. GD Roy, Khanna Non-conventional Energy Sources, Publishers, 6th Edition
- 3. Khahid Rehman Hekeem, Mohammad Jawald., Umar Rashid, *Biomass & Bioenergy*, Springer International Publishing Ltd.

Page 99 of 147

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

III B.Tech- I Sem

L	T	P	C
3	-	-	3

(20ME0322) NON- CONVENTIONAL ENERGY RESOURCES (OPEN ELECTIVE-I)

(Common to all branches)

COURSE OBJECTIVES

The objective of the course is to

- 1. Know the importance of energy, resources of renewable energy, their usage and impact on environment.
- 2. Recognize the significance of solar energy, its harnessing technologies & its applications.
- 3. Identify the method of exploiting energy from wind and parameters to be considered for the selection of site for wind turbine installation.
- 4. Explain the concept of bio energy and its conversion devices.
- 5. Differentiate various renewable energies such as tidal energy, fuel cells.

COURSE OUTCOMES

On successful completion of the course, the student will be able to

- 1. State various sources of energies, its availability and explain the importance of them by observing the global energy scenario.
- 2. Distinguish the types of solar energy tapping devices and describe the method of harnessing the solar energy.
- 3. Summarize the wind energy systems and elucidate the impact of it in environmental aspects.
- 4. Describe the biomass conversion process and list out various bioenergy applications.
- 5. Interpret the knowledge of renewable energies such as tidal energy, OTEC.
- 6. Identify numerous applications renewable energy resources and illustrate its harnessing technologies.

UNIT-I

Fundamentals of Energy system: Energy source, various forms of renewable energy, Conservation of energy and Energy scenario, need for non-conventional energy sources, alternative energy sources, Environmental consequences of oil fuel use, Role of new and renewable sources.

Solar Radiation: Environmental Impact of solar power, Direct & Diffuse Radiation, Terrestrial and extraterrestrial solar radiation, Solar radiation on tilted surface- Measurement of Solar Radiation using Pyranometer, Pyrheliometer, and Sunshine recorder.

UNIT-II

Solar thermal conversion: Flat Plate and Concentrating Collectors – Solar direct Thermal Applications– Solar thermal Power Generation

Photo voltaic Conversion: Fundamentals of Solar Photo Voltaic Conversion – Solar Cells – Solar PV Power Generation – Solar PV Applications

UNIT-III

Wind Energy: Wind Formation - Site Selection for Wind Turbine – wind speed and power relations, power extracted from the wind.

Wind Energy System: Types of Wind Energy Systems – Components of Wind Turbine – Horizontal Vs Vertical axis turbine -Performance –Safety and Environmental Aspects.

UNIT-IV

Bio – Energy: Origin of biomass, Bioenergy conversion technology – Biomass gasifiers: classification of biomass gasifiers, Biogas plants: classification of biogas plant **Bio Fuel:** Ethanol production – Biodiesel – Cogeneration - Applications of Biofuel

UNIT-V

Hydrogen Energy: production of Hydrogen-Storage and Transportation of Hydrogen, Safety aspects and Applications of hydrogen.

Other Sources of Energy: Tidal energy – Wave Energy –OTEC Cycles - Open and Closed OTEC cycles, Geothermal Energy- Types of cycles

TEXT BOOKS

- 1. R. K.Rajput, *Non-conventional Energy Sources and Utilization*, S. Chand Publishers, 2nd Edition, 2014.
- 2. G. D Rai, Non-Conventional Energy Sources, Khanna Publishers, 1st Edition, 2010.
- 3. Nicholas Jenkins & Janaka Ekanayake, *Renewable Energy Engineering*, Cambridge University Press; 1st Edition, 2017.

- 1. Dr. R K Singal, *Non-Conventional Energy Resources*, S.K Kataria & Sons, 4th Edition, 2014.
- 2. John Twidell & Tony Weir, *Renewable Energy Sources*, Routledge publisher, 3rd Edition, 2015.
- 3. Sukhatme. S.P, *Solar Energy, Principles of Thermal Collection and Storage*, Tata McGraw Hill Publishing Company Limited, 6th Edition, 1990.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

III B.Tech- I Sem

L	T	P	C
3	-	-	3

(20EC0451) INTRODUCTION TO COMMUNICATION SYSTEMS (OPEN ELECTIVE-I)

(Common to all branches)

COURSE OBJECTIVES

The objectives of this course:

- 1. To study the fundamental concepts of the analog communication system.
- 2. To analyze various analog modulation and demodulation techniques.
- 3. The students to be able to understand, analyze, and design fundamental digital communication systems.
- 4. The course focuses on developing digital communication systems.
- 5. To understand basics of various Communication.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Demonstrate knowledge in elements of Analog Digital and Wireless Communication Systems.
- 2. Analyze the analog modulated and demodulated systems.
- 3. Understand the principle involved in different modulation techniques.
- 4. Understand the basic principles of baseband and pass band digital modulation schemes.
- 5. Analyze probability of error performance of digital systems and are able to design digital communications.
- 6. Implement various Keying and accessing techniques in real time wireless communication systems.

UNIT- I

Communication: Introduction, Elements of communication systems, wired Communications systems, Wireless Communications systems, Modulation, Need of modulation, modulation Methods, difference between Analog and Digital communication

Amplitude Modulation & Demodulation: DSB-FC(AM) modulation& its demodulation, Double sideband suppressed carrier (DSB-SC) modulation & its demodulation, Single sideband (SSB) transmission, Comparison of various amplitude modulation techniques.

UNIT- II

Angle Modulation & Demodulation: Generalized concept of angle modulation, Bandwidth of angle modulated waves – Narrow band frequency modulation (NBFM) and Wide band FM (WBFM), Phase modulation(PM).

UNIT-III

Noise in Communication Systems: Types of noise, Noise figure.

Analog Pulse Modulation Schemes: Pulse amplitude modulation (PAM), Pulse Width

modulation (PWM) and Pulse Position modulations (PPM)

UNIT IV

Digital Communication: Introduction-Elements of digital communication systems, sampling process, quantization, quantization noise.

Source Coding Systems: Pulse-Code Modulation (PCM), Differential PCM (DPCM), Delta modulation (DM), Comparison of PCM, DPCM, DM.

Pass Band Data Transmission: Introduction, Amplitude shift keying (ASK), binary phase shift keying (BPSK), Binary Frequency shift keying (BFSK) Comparison of ASK, PSK, FSK.

UNIT V

Introduction to Wireless Communication Systems: Evolution of Mobile Radio Communication Systems, Examples of wireless communication Systems – Paging Systems, Cordless Telephone, Cellular Telephone Systems, Overview of generation of cellular systems.

Multiple Access Techniques for Wireless Communications: Introduction to Multiple Access, FDMA, TDMA, CDMA, SDMA.

TEXT BOOKS

- 1. Simon Haykin, Communication Systems, Wiley India Edition, 4th Edition, 2011.
- 2. B.P. Lathi, & Zhi Ding, *Modern Digital & Analog Communication Systems*, OxfordUniversity Press, International 4th edition, 2010.

REFERENCES

- 1. Sam Shanmugam, Digital and Analog Communication Systems, John Wiley, 2005.
- 2. Bruce Carlson, & Paul B. Crilly, *Communication Systems An Introduction to Signals & Noise in ElectricalCommunication*, McGraw-Hill, 5th Edition, 2010
- 3. Bernard Sklar, Digital Communications, Prentice-Hall PTR, 2nd edition, 2001.
- 4. Herbert Taub& Donald L Schilling, *Principles of Communication Systems*, Tata McGraw-Hill, 3rd Edition, 2009.
- 5. *Modern Communication Systems Using MATLAB*, J.G.Proakis, M Salehi, Gerhard Bauch, CENGAGE, 3rd Edition, 2013.

Page 103 of 147

III B.Tech- I Sem

L	T	P	C
3	-	-	3

(20HS0813) MANAGEMENT SCIENCE (OPEN ELECTIVE-I)

(Common to all branches)

COURSE OBJECTIVES

The objectives of this course:

- 1. To understand the basic concepts, principles and processes of management
- 2. To help the students gain an understanding of the functions, responsibilities of managers
- 3. To get an awareness about the latest developments and contemporary issues in the field of management

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Utilize appropriate theoretical frameworks to real life business and managerial problems
- 2. Identify appropriate operational risks and develop appropriate responses to them
- 3. Apply human resource principles to recruit, select and manage employees to achieve organizational goals
- 4. Enact strategy, including contingent plans for the effective management of the organization
- 5. Identify, plan, and implement the projects and evaluate the performance of the projects
- 6. Analyze effective application of latest developments to diagnose and solve organizational problems

UNIT I

INTRODUCTION TO MANAGEMENT:

Management - Concept and meaning — Nature — Functions - Management as a science and art and both. Schools of management thought - Taylor's scientific theory - Henry Fayol's principles - Weber's Ideal Bureaucracy - Eltan Mayo's Human relations - Systems theory - Situational or Contingency theory - Social responsibilities of management.

Organizational structure and design: Features of organizational structure - work specialization - Departmentation - Span of control-Centralization and Decentralization. Organizational designs - Line organization-Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of organization.

UNIT II

OPERATIONS MANAGEMENT:

Principles and Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study - Statistical Quality Control: C chart, P chart, (simple Problems) Deming's contribution to quality. Material Management: Objectives - Inventory - Functions, types, inventory classification techniques - EOQ-ABC Analysis - Purchase Procedure and Stores Management. Marketing Management: Concept - Meaning - Nature - Functions of Marketing - Marketing Mix - Channels of distribution - Advertisement and sales promotion - Marketing Strategies based on Product Life Cycle.

UNIT III

HUMAN RESOURCES MANAGEMENT (HRM):

HRM - Definition and meaning — nature-Managerial and Operative functions -Evolution of HRM - Human Resource Planning(HRP) - Employee Recruitment - sources of recruitment - employee selection - process and tests in employee selection - Employee training and development - Onthe- job and Off-the-job training methods - Performance Appraisal systems — Concept — Methods of Performance Appraisal — Placement — Employee Induction-Wage and Salary Administration — Objectives - Essentials of Wage and Salary Administration - Job Analysis - Process - Job Evaluation - Employee Grievances - techniques of handling Grievances.

UNIT IV

STRATEGIC MANAGEMENT:

Definition& meaning-Setting of Vision- Mission- Goals- Corporate Planning Process-Environmental Scanning-Steps in Strategy Formulation and Implementation - SWOT Analysis. **Project Management (PERT/CPM):**Network Analysis- Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying Critical Path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing. (Simple problems).

UNIT V

CONTEMPORARY ISSUES IN MANAGEMENT:

The concept of MIS – Materials Requirement Planning(MRP) – Just-In-Time (JIT) System - Total Quality Management (TQM)- Six Sigma Concept- Supply Chain Management-Enterprise Resource Planning (ERP)- Performance Management- Business Process Outsourcing (BPO), Business Process Re-engineering and Bench Marking -Balanced Score Card-Knowledge Management.

TEXT BOOKS

- 1. A.R Aryasri: Management Science, TMH,2013
- 2. Stoner, Freeman, Gilbert, *Management*, Pearson Education, New Delhi, 2012.

REFERENCES

- 1. Kotler Philip & Keller Kevin Lane: *Marketing Management*, PHI, 2013.
- 2. Koontz & Weihrich: Essentials of Management, 6/e, TMH,2005.
- 3. Thomas N.Duening & John M.Ivancevich *Management Principles and Guidelines*, Biztantra.
- 4. Kanishka Bedi, *Production and Operations Management*, Oxford University Press, 2004.
- 5. Memoria & S.V.Gauker, Personnel Management, Himalaya, 25/e,2005

Page 105 of 147

III B.Tech. - I Sem.

L	T	P	C
-	-	3	1.5

(20CS0519) OBJECT ORIENTED ANALYSIS AND DESIGN LAB

COURSE OBJECTIVES

The objectives of this course

- 1. Illustrate the requirements specification for an intended software system
- 2. Demonstrate the UML diagrams for the given specification
- 3. Map the design properly to the code

COURSE OUTCOMES

On successful completion of this course, the student will be able to

- 1. Construct various UML models (including use case diagrams, class diagrams, interaction diagrams, state chart diagrams, activity diagrams, and implementation diagrams) using the appropriate notation
- 2. Describe the importance of systems analysis and design in solving complex problems
- 3. Explain how the object-oriented approach differs from the traditional approach to systems analysis and design
- 4. Understand the role and function of each UML model in developing object oriented software
- 5. Exhibit software development process
- 6. Recognize the difference between various object relationships: inheritance, association, whole-part, and dependency relationships

List of Experiments:

Draw standard UML diagrams using an UML modeling tool for a given case study and map design to code and implement a 3 layered architecture. Test the developed code and validate whether the SRS is satisfied.

- 1. Identify a software system that needs to be developed.
- 2. Document the Software Requirements Specification (SRS) for the identified system.
- 3. Identify use cases and develop the Use Case model.
- 4. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.
- 5. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams
- 6. Draw relevant State Chart and Activity Diagrams for the same system.
- 7. Implement the system as per the detailed design
- 8. Test the software system for all the scenarios identified as per the use case diagram
- 9. Improve the re usability and maintainability of the software system by applying appropriate design patterns.
- 10. Implement the modified system and test it for various scenarios

OOAD Problems that may be considered are

- 1. College information system
- 2. Hostel management
- 3. ATM system
- 4. Library management system
- 5. Passport Automation System
- 6. Political Administration System.

TEXT BOOKS

- 1. Grady Booch, James Rumbaugh, Ivar Jacobson, *The Unified Modeling Language, User Guide*, 2nd edition, Pearson Education, 2005.
- 2. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado, *UML 2 Toolkit*, WILEY-Dreamtech India Pvt. Ltd, 2009.

III B.Tech. - I Sem.

L	T	P	C
•	-	3	1.5

(20CS0520) DATA WAREHOUSING AND DATA MINING LAB

COURSE OBJECTIVES

The objectives of this course

- 1. Learn to perform data mining tasks using a data mining toolkit (such as open source WEKA),
- 2. Explain the data sets and data preprocessing
- 3. Demonstrate the working of algorithms for data mining tasks such association rule mining, classification, clustering and regression
- 4. Exercise the data mining techniques with varied input values for different parameters

COURSE OUTCOMES

At the end of the course student will be able to

- 1. Explore WEKA tool
- 2. Perform data preprocessing tasks
- 3. Demonstrate association rule mining on datasets
- 4. Implement classification techniques on datasets
- 5. Illustrate clustering and regression techniques on datasets
- 6. Design and implement data mining algorithms.

LIST OF EXPERIMENTS:

1. Credit Risk Assessment

Description: The business of banks is making loans. Assessing the credit worthiness of an applicant is of crucial importance. You have to develop a system to help a loan officer decide whether the credit of a customer is good, or bad. A bank's business rules regarding loans must consider two opposing factors. On the one hand, a bank wants to makes many loans as possible. Interest on these loans is the banks profit source. On the other hand, a bank cannot afford to make too many bad loans. Too many bad loans could lead to the collapse of the bank. The bank's loan policy must involve a compromise: not too strict, and not too lenient. To do the assignment, you first and foremost need some knowledge about the world of credit. You can acquire such knowledge in a number of ways.

- a) Knowledge Engineering. Find a loan officer who is willing to talk. Interview her andtry to represent her knowledge in the form of production rules.
- b) Books. Find some training manuals for loan officers or perhaps a suitable textbookon finance. Translate this knowledge from text form to production rule form.
- c) Common sense. Imagine yourself as a loan officer and make up reasonable rules which can be used to judge the credit worthiness of a loan applicant.
- d) Case histories. Find records of actual cases where competent loan officers correctlyjudged when, and when not to, approve a loan application.

2. The German Credit Data:

Actual historical credit data is not always easy to come by because of confidentiality rules. Here is one such dataset, consisting of 1000 actual cases collected in Germany. credit dataset (original) Excel spreadsheet version of the German credit data (Down load from web). In spite of the fact that the data is German, you should probably make use of it for this assignment. (Unless you really can consult a real loan officer!)

A few notes on the German dataset

- DM stands for Deutsche Mark, the unit of currency, worth about 90cents Canadian (but looks and acts like a quarter).
- Owns telephone. German phone rates are much higher than in Canada so fewer people own telephones.
- Foreign worker. There are millions of these in Germany (many from Turkey). It is very hard to get German citizenship if you were not born of German parents.
- There are 20 attributes used in judging a loan applicant. The goal is the classify the applicant into one of two categories, good or bad.

Sub tasks: (Turn in your answers to the following tasks)

- a) List all the categorical (or nominal) attributes and the real-valued attributes separately.
- b) What attributes do you think might be crucial in making the credit assessment? Come up with some simple rules in plain English using your selected attributes.
- c) One type of model that you can create is a Decision Tree train a Decision Tree using the complete dataset as the training data. Report the model obtained after training.
- d) Suppose you use your above model trained on the complete dataset, and classify credit good/bad for each of the examples in the dataset. What % of examples can you classify correctly? (This is also called testing on the training set) Why do you think you cannot get 100 % training accuracy?
- e) Is testing on the training set as you did above a good idea? Why or Why not?
- f) One approach for solving the problem encountered in the previous question is using cross validation? Describe what is cross validation briefly. Train a Decision Tree again using cross validation and report your results. Does your accuracy increase/decrease? Why?
- g) Check to see if the data shows a bias against "foreign workers" (attribute 20), or "personal-status" (attribute 9). One way to do this (perhaps rather simple minded) is to remove these attributes from the dataset and see if the decision tree created in those cases is significantly different from the full dataset case which you have already done. To remove an attribute you can use the preprocess tab in Weka's GUI Explorer. Did removing these attributes have any significant effect? Discuss.
- h) Another question might be, do you really need to input so many attributes to get good results? Maybe only a few would do. For example, you could try just having attributes 2, 3, 5, 7, 10, 17 (and21, the class attribute (naturally)). Try out some combinations. (You had removed two attributes in problem 7. Remember

Page 109 of 147

- to reload the raff data file to get all the attributes initially before you start selecting the ones you want.) Sometimes, the cost of rejecting an applicant who actually has a good credit (case 1) might
- i) be higher than accepting an applicant who has bad credit (case 2). Instead of counting them is classifications equally in both cases, give a higher cost to the first case (say cost 5) and lower cost to the second case. You can do this by using a cost matrix in Weka. Train your Decision Tree again and report the Decision Tree and cross-validation results. Are they significantly different from results obtained in problem 6 (using equal cost)?
- j) Do you think it is a good idea to prefer simple decision trees instead of having long complex decision trees How does the complexity of a Decision Tree relate to the bias of the model?
- k) You can make your Decision Trees simpler by pruning the nodes. One approach is to use Reduced Error Pruning - Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross-validation (you can do this in Weka) and report the Decision Tree you obtain? Also, report your accuracy using the pruned model. Does your accuracy increase?
- l) (Extra Credit): How can you convert a Decision Trees into "if-then else rules". Make up your own small Decision Tree consisting of 2-3 levels and convert it into a set of rules. There also exist different classifiers that output the model in the form of rules one such classifier in Weka is rules. PART, train this model and report the set of rules obtained. Sometimes just one attribute can be good enough in making the decision, yes, just one! Can you predict what attribute that might be in this dataset? One R classifier uses a single attribute to make decisions (it chooses the attribute based on minimum error). Report the rule obtained by training a one R classifier. Rank the performance of j48, PART and one R.

Task Resources:

Andrew Moore's Data Mining Tutorials (See tutorials on Decision Trees and CrossValidation)

- Decision Trees (Source: Tan, MSU)
- Tom Mitchell's book slides (See slides on Concept Learning and Decision Trees)

Weka resources:

- 1. Introduction to Weka (html version) (download ppt version)
- 2. Download Weka
- 3. Weka Tutorial
- 4. ARFF format

TEXT BOOKS

- 1. Jiawei Han and Micheline Kamber, Elsevier, *Data Mining: Concepts and Techniques*, Second Edition, 2010.
- 2. Prabhu C.S.R., *Data Ware housing: Concepts, Techniques, Products and applications*, Prentice Hall of India, 2011

III B.Tech.- I Sem.

L	T	P	С
1	-	2	2

(20CS0548) APPDESIGN FOR ANDROID (Skill Oriented Course)

COURSE OBJECTIVES

The objectives of this course

- 1. Outline the basic concepts of Learning the language (kotlin) and basic data types.
- 2. Illustrate the fundamental concepts in Android programming
- 3. Understand to activities and intents, designing user interface using views
- 4. Design & program real working education based mobile application projects.

COURSE OUTCOMES

On successful completion of this course, students will be able to

- 1. Know and apply the components of the screen
- 2. Describe the limitations and challenges of working in a mobile and wire less environment as well as the commercial and research opportunities presented by these technologies
- 3. Correlate and apply the different types of application models / architectures used to develop mobile software applications
- 4. Illustrate the components and structure of a mobile development frameworks (Android SDK and Eclipse Android Development Tools (ADT))
- 5. Demonstrate their ability to deploy software to mobile devices
- 6. Identify how and when to apply the different components to develop a working system

CONTENTS:

- 1. Introduction to Kotlin: Features of kotlin, History of Kotlin.
- 2. Installation of interlay: Working of the Intellij IDE, Write code and Run the Code
- 3. Learning the language (kotlin): Data types, conditionals, loops, operators, arrays, functions
- 4. Hello Toast
- 5. Basic Android concepts: Activity, Views And View Group, Menus & Pickers, Intents, Context Text and Scroll View, Navigation Components.
- 6. Activity Life Cycle
- 7. User Interface Components
- 8. Buttons and Clickable Images
- 9. Using more Android capabilities: Providing feedback to the user, Sounds, Flash, Raw camera usage Touch gestures.
- 10. Create your first project

TEXTBOOKS

- 1. John Horton, *Android-Programming-with-Kotlin-for-Beginners*, published by Packt Publishing April 2019
- 2. Pierre-Olivier Laurence, Amanda Hinchman-Dominguez, G. Blake Meike, Mike Dunn *Programming Android with Kotlin*, published by O'Reilly Media.

REFERENCE

1. Stephen Samuel, Stefan Bocutiu, programming kotlin, published by Packt Publishing.

WEB REFERENCES

- 1. https://developer.android.com/courses/fundamentals-training/overview-v
- 2. https://developer.android.com/codelabs/build-your-first-android-app-kotlin#
- 3. https://www.tutorialkart.com/kotlin-android-tutorial/

Page 112 of 147

III B.Tech - I Sem.

L	T	P	C
2	ı	-	-

(20HS0817) ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE (NON-CREDIT COURSE)

COURSE OBJECTIVES

The objectives of this course:

- 1. To impart basic principles of thought process, reasoning and inference.
- 2. To connect society and nature through sustainability.
- 3. To know Holistic life style of yogic science and wisdom capsules in Sanskrit literature.
- 4. To introduce Indian knowledge system and Indian perspective of modern scientific world-view
- 5. To learn the basic principles of Yoga and holistic healthcare system.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Connect up the basic principles of thought process.
- 2. Understand Holistic life style of yogic science and wisdom capsules in Sanskrit literature.
- 3. Analyze the society and nature through sustainability.
- 4. Explain Indian knowledge system and Indian perspective of modern science.
- 5. Use the basic principles of Yoga and holistic health care system

UNIT-I

Part-1

Basic structure of Indian Knowledge System: Introduction to vedic Knowledge - 4ved (The Rig Veda: The Book of Mantra, The Yajur Veda: The Book of Ritual, Sama Veda: The book of Chants & songs and The Atharva Veda: The Book of Spell- The Age of the 4 Vedas The structure of the Vedic books.

Part-2

4 Upaved (Ayurved, Dhanurved, Gandharva Ved & Sthapthya Adi.,) The Vedas place in Hindu Philosophy

UNIT-II

Part-1

Vedangas: Introduction to Vedangas – The Importance of Vedangas – 6 Six Philosophical system (Shisha, Kalppa, Nirukha, VYkaran, Jyothish & Chand) Vedangas compared to Limbs of Human body.

Part-2

Upanga: Introduction to Upanga – Meaning of Upangas of Veda–Subsidiary parts of the veda - (Dharma Shastra, Meemamsa, Purana & Tharka Shastra)

UNIT-III

Part-1: Modern Science and Indian Knowledge System: India's Contribution to Science and Technology (From Ancient to Modern) - Development in Different Branches of Science and Technology.

Part-2: Yoga and Holistic Healthcare: Introduction to Yoga— Its History –Importance of Yoga

- Yogic concepts of Holistic Health care – Potentiality of Yoga – Personality development through Yoga.

UNIT-IV

Part-1: Philosophical Tradition: Introduction to Indian Philosophy (Charvaka Philosophy, Samkhya Philosophy, Yoga Philosophy, Nyaya Philosophy, Mimansa Philosophy, Vaisesika Philosophy, Buddhist Philosophy and Jain a Philosophy.

Part-2: Indian Linguistic Tradition: Introduction to Linguistics - Aspects of Linguistic Behaviour (Phonology, morphology, syntax and semantics)

UNIT-V

Indian Artistic Tradition: Introduction to Indian Arts – Religious and cultural diversities – Stylistic Variations - Chitrakala, Vasthukala, Sangeetha, Nruthya Sahithya and Jyothisha—Tradition to Modern –Case studies

TEXTBOOKS

- 1. V. Sivaramakrishnan (Ed.), *Cultural Heritage of India-course material*, Bharatiya Vidya Bhavan, Mumbai. 5th Edition,2014
- 2. S.C. Chaterjee & D.M. Datta, *An Introduction to Indian Philosophy*, University of Calcutta, 1984

REFERENCES

- 1. VN Jha (Eng. Trans.), *Tarkasangraha of Annam Bhatta*, International Chinmay Foundation, Velliarnad, Arnakulam
- 2. Ramakrishna Mission *Yoga Sutra of Patanjali*, Kolkata GN Jha (Eng. Trans.), Ed. RN Jha, *Yoga-darshanam with VyasaBhashya*, Vidyanidhi Prakashan, Delhi2016
- 3. RN Jha, *Science of Consciousness Psychotherapy and Yoga Practices*, Vidyanidh Prakashan, Delhi 2016
- 4. Krishna Chaitanya, Arts of India, Abhinav Publications, 1987

R20

B.Tech-CAD

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

III B.Tech – I Sem.

L	T	P	С
-	•	-	1.5

(20CS1102) INTERNSHIP

 Mandatory Internship at the end of the II year (to be evaluated during III Year I Semester)

III B.Tech.-II Sem.

L	T	P	С
3	-	-	3

(20CS1103) FUNDAMENTALS OF MACHINE LEARNING

COURSE OBJECTIVES

The objectives of this course:

- 1. To investigate various Supervised Learning models of machine learning
- 2. To investigate various Unsupervised Learning models of machine learning
- 3. To expose students to the Dimensionality Reduction
- 4. To investigate various Reinforcement Learning models of machine learning

COURSEOUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Understand the basics concept of Machine Learning.
- 2. Apply the various supervised learning algorithms for classification and regression problems.
- 3. Analyze the various unsupervised learning techniques for real world problems.
- 4. Discuss the concepts of various clustering techniques.
- 5. Identify the need of non-parametric methods and Dimensionality reduction techniques in machine learning.
- 6. Infer theoretical and practical aspects of reinforcement learning

UNIT-I

INTRODUCTION: Machine Learning Introduction - Types of Machine Learning: Supervised Learning, Unsupervised Learning, Reinforcement Learning-Real World Applications-—Model Selection and Generalization, Underfitting, Overfitting — Guidelines for Machine Learning Experiments

UNIT-II

SUPERVISED LEARNING: Classification, Decision Trees – Univariate Tree – Multivariate Tree – Pruning, Bayesian Decision Theory, Parametric Methods-Maximum Likelihood Estimation - Gradient Descent- Regression: Linear Regression- Logistic Regression, Perceptron-Multilayer Perceptron-Back Propagation

UNIT-III

UNSUPERVISED LEARNING: Clustering- Mixture Densities- K-Means Clustering-Expectation-Maximization Algorithm- Mixtures of Latent Variable Models- Supervised Learning after Clustering- Hierarchical Clustering

R20 B.Tech-CAD

UNIT-IV

 $\begin{tabular}{ll} \textbf{NON PARAMETRIC METHODS} - Non parametric Density Estimation - k - Nearest Neighbor - Nonparametric Classification- Condensed Nearest Neighbor - Nonparametric Classification - Condensed Nearest Neighbor - Nonparametric Classification - Condensed Nearest Neighbor - Nonparametric Classification - Nonparametric Neighbor -$

DIMENSIONALITY REDUCTION - Subset Selection-Principal Components Analysis-Factor Analysis-Linear Discriminant Analysis

UNIT-V

REINFORCEMENT LEARNING: Introduction — Elements of Reinforcement Learning - Single State Case: K-Armed Bandit- - Model-Based Learning- Temporal Difference Learning- Generalization- Partially Observable States.

TEXTBOOK

1. Ethem Alpaydin, *Introduction to Machine Learning*, MIT Press, Second Edition, 2010.

REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S.Sutton and Andrew G. Barto: *Reinforcement Learning: An Introduction*. MIT Press

Page 117 of 147

L	T	P	C
3	-	-	3

III B. Tech - II Sem.

(20CS1106) R PROGRAMMING FOR DATA SCIENCE

COURSE OBJECTIVES

The objectives of this course:

- 1. Understand the fundamentals of 'R' programming.
- 2. Use R for statistical programming, computation, graphics, and modeling
- 3. Write functions and use R in an efficient way
- 4. Fit some basic types of statistical models
- 5. Be able to expand their knowledge of R on their own

COURSE OUTCOMES (COs)

On successful completion of this course, student will be able to:

- 1. Understanding the basic concept of R programming framework and data types and data structures
- 2. Understanding the concepts such as control structures and recursion using R programming
- 3. Applying mathematical and statistical operations data structures in R
- 4. Utilize different functional programming and file handling operations in R
- 5. Analyze the various graphics function using R programming
- 6. Understanding the concept of various Probability Distributions, Regression

UNIT-I

Introduction, How to run R, R Sessions and Functions, Basic Math, Variables, Data Types, Vectors, Conclusion, Advanced Data Structures, Data Frames, Lists, Matrices, Arrays, Classes.

UNIT-II

R Programming Structures, Control Statements, Loops, Looping Over Nonvector Sets,-If-Else, Arithmetic and Boolean Operators and values, Default Values for Argument, Return Values, Deciding Whether to explicitly call return-Returning Complex Objects, Functions are Objective, No Pointers in R, Recursion.

UNIT-III

Doing Math and Simulation in R, Math Function, Extended Example Calculating Probability-Cumulative Sums and Products-Minima and Maxima-Calculus, Functions Fir Statistical Distribution, Sorting, Linear Algebra Operation on Vectors and Matrices, Extended Example: Vector cross Product-Extended Example: Finding Stationary Distribution of Markov Chains, Set Operation, Input /output, Accessing the Keyboard and Monitor, Reading and writer Files.

R20 B.Tech-CAD

UNIT-IV

Graphics, Creating Graphs, The Workhorse of R Base Graphics, the plot() Function – Customizing Graphs, Saving Graphs to Files.

UNIT-V

Probability Distributions, Normal Distribution-Binomial Distribution-Poisson Distributions Other Distribution, Basic Statistics, Correlation and Covariance, T-Tests, ANOVA. Linear Models, Simple Linear Regression, -Multiple Regression Generalized Linear Models, Logistic Regression, Poisson Regression-other Generalized Linear Models-Survival Analysis, Nonlinear Models, Splines-Decision-Random Forests.

TEXT BOOKS

- 1. Norman Matloff, *The Art of R Programming*, Cengage Learning.
- 2. Lander, *R for Everyone*, Pearson

REFERENCES

- 1. Dr. Mark Gardener, Beginning R the statistical programming language, John Wiley
- 2. Paul Teetor, R Cookbook, Oreilly.
- 3. Rob Kabacoff, *R in Action*, Manning
- 4. Richard Cotton, Learning R: A Step-by-Step Function Guide to Data Analysis.
- 5. Peng, R. D., & Matsui. E, The Art of Data Science. A Guide for Anyone Who Works with Data, Sky brude Consulting, 2015

Page 119 of 147

III B.Tech.-II Sem.

L	T	P	C
3	-	-	3

(20CS0523) DESIGN AND ANALYSIS OF ALGORITHMS

COURSE OBJECTIVES

The objectives of this course:

- 1. Demonstrate the importance of algorithms in computing.
- 2. Explain the analysis of algorithms
- 3. Illustrate the method of finding the complexity of algorithms
- 4. Describe the advanced algorithm design and analysis techniques
- 5. Introduce special classes of algorithms NP completeness and the classes P & NP

COURSE OUTCOMES(COs)

On successful completion of this course, student will be able to

- 1. Implement the time complexity of an algorithm by solving the corresponding Recurrence equation
- 2. Apply the Divide and Conquer strategy to solve searching, sorting and matrix multiplication problems.
- 3. Analyze the efficiency of Greedy and Dynamic Programming design techniques to solve the optimization problems.
- 4. Illustrate Backtracking technique for solving constraint satisfaction problems.
- 5. Differentiate the LC and FIFO branch and bound solutions for optimization problems, and compare the time complexities with Dynamic Programming techniques.
- 6. Classify deterministic and Non-deterministic algorithms; P, NP, NP –hard and NP-complete classes of problems.

UNIT-I

Introduction: Algorithm, Pseudocode for expressing algorithms, Performance Analysis - Space complexity, Time complexity, Order of growth, Asymptotic Notation-Big oh (O) notation, Omega notation, Theta notation and Little oh (o) notation. Recurrences - Towers of Hanoi. Disjoint Sets -disjoint set operations, union and find algorithms.

UNIT-II

Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected Components and Spanning Trees.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

R20 B.Tech-CAD

UNIT-III

Greedy method: General method, applications-Job sequencing with dead-lines, knapsack problem, Minimum-cost spanning trees, Single source shortest path.

Dynamic Programming: General method, applications-Optimal binary search trees, 0/1 knapsack, All pairs shortest path, The Travelling sales person problem.

UNIT-IV

Backtracking: General method, applications-8-queenproblem, sum of subsets, graph coloring, Hamiltonian cycles.

Branch and Bound: General method, Applications -Travelling sales person, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

UNIT-V

NP-Hard and NP-Complete problems: Basic concepts, nondeterministic algorithms, The classes-NP-Hard and NP Complete, Cook's theorem, Reduction Source Problems, Reductions: Reductions for some known problems.

TEXTBOOKS

- 1. Ellis Horowitz, S. Satraj Sahniand Rajasekharam, *Fundamentals of Computer Algorithms*, Galgotia Publications Pvt. Ltd., 4th Edition, 1998.
- 2. Parag Himanshu Dave, Himanshu Bhalchandra Dave, *Design and Analysis Algorithms* Pearson Education India, 2007.

REFERENCES

- 1. Anany Levitin, *Introduction to the Design and Analysis of Algorithms*, Third Edition, Pearson Education, 2012.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivestand Clifford Stein, *Introduction to Algorithms*, Third Edition, PHI Learning Private Limited, 2012.
- 3. Alfred V. Aho, John E. Hopcroftand Jeffrey D. Ullman, *Data Structures and Algorithms*, Pearson Education, Reprint 2006.
- 4. Donald E. Knuth, *The Art of Computer Programming*, Volumes 1 & 3 Pearson Education, 2009.
- 5. Steven S. Skiena, Second Edition, *The Algorithm Design Manual*, Springer, 2008.

Page 121 of 147

(Professional Elective Course-II)

III B.Tech.-II Sem.

	L	T	P	C
(20CS0533) CYBER SECURITY	3	_		3

COURSEO BJECTIVES

The objectives of this course:

- 1. To understand the fundamentals of cybercrime and the cyber offenses.
- 2. To learn the concepts of cyber threats and cyber security.
- 3. To familiarize various cyber threats, attacks, vulnerabilities, defensive mechanisms, security policies and practices.

COURSE OUTCOMES (COs)

On successful completion of this course, student will be able to:

- 1. Identify the fundamentals of cybercrimes.
- 2. Analyze the various cyber offenses
- 3. Infer the cyber threats, attacks, vulnerabilities and its defensive mechanism.
- 4. Understand the Tools and Methods Used in Cybercrime.
- 5. Design suitable security policies for the given requirements.
- 6. Survey the industry practices and tools to be on par with the recent trends.

UNIT-I

Introduction to Cybercrime: Introduction, Cybercrime, and Information Security, Who are Cyber criminals, Classifications of Cybercrimes, And Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cybercrimes.

UNIT-II

Cyber Offenses: How Criminals Plan Them: Introduction, How Criminals plan the Attacks, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes,

Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing.

UNIT-III

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security,

Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

R20 B.Tech-CAD

UNIT-IV

Tools and Methods Used in Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horse and Backdoors, Steganography, DoS and DDoS attacks, SQL Injection, Buffer Overflow. **Phishing and Identity Theft:** Introduction, Phishing, Identity Theft (ID Theft)

UNIT-V

Cyber Security: Organizational Implications Introduction, Cost of Cybercrimes and IPR issues, Web threats for Organizations, Security and Privacy Implications, **Social media marketing:** Security Risks and Perils for Organizations, Social Computing and

the associated challenges for Organizations.

TEXTBOOK

1. Nina Godbole and Sunil Belapure, *Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives*, Wiley INDIA.

REFERENCES

- 1. James Graham, Richard Howard and Ryan Otson, *Cyber Security Essentials*, CRC Press.
- 2. Chwan-Hwa (john) Wu, J. David Irwin, *Introduction to Cyber Security*, CRC Press T & F Group

Page 123 of 147

III B.Tech.-II Sem.

L	T	P	С
3	-	-	3

(20CS0545) BLOCKCHAIN TECHNOLOGY

(Professional Elective Course-II)

COURSE OBJECTIVES

The objectives of this course:

- 1. To decompose a blockchain system's fundamental components, how they fit together and examine a decentralization using blockchain.
- 2. To explain how Cryptocurrency works, from when a transaction is created to when it is considered part of the blockchain.
- 3. To explain the components of Ethereum and programming languages for Ethereum.
- 4. To study the basics Hyperledger and Web3.
- 5. To provide details of alternative blockchain and blockchain projects in different perspective.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Understand the technology of Blockchain and how it works behind the scenes.
- 2. Identify different approaches to develop decentralized applications.
- 3. Analyze the Bitcoin and its limitations by comparing with other alternative coins.
- 4. Recognize Web3 and Hyper Ledger Architecture
- 5. Utilize architectural components of a Hyperledger and its development framework.
- 6. Discuss Alternative blockchains and emerging trends in blockchain.

UNIT - I

Introduction: History of Blockchain – Types of Blockchain – Consensus – Decentralization using Blockchain – Blockchain and Full Ecosystem Decentralization – Platforms for Decentralization.

UNIT - II

Cryptocurrency: Bitcoin – Digital Keys and Addresses – Transactions – Mining – Bitcoin Networks Wallets – Alternative Coins – Theoretical Limitations – Bitcoin limitations – Name coin – Prime coin – Zcash – Smart Contracts – Ricardian Contracts.

UNIT - III

Ethereum: The Ethereum Network – Components of Ethereum Ecosystem – Ethereum Programming Languages: Runtime Byte Code, Blocks and Blockchain, Fee Schedule – Supporting Protocols – Solidity Language.

UNIT - IV

Web3 And Hyperledger: Introduction to Web3 – Contract Deployment – POST Requests – Development Frameworks – Hyperledger as a Protocol – The Reference Architecture – Hyperledger Fabric – Distributed Ledger – Corda.

UNIT - V

Alternative Blockchains and Next Emerging Trends: Kadena – Ripple – Rootstock – Quorum – Tendermint – Scalability – Privacy – Other Challenges – Blockchain Research – Notable Projects – Miscellaneous Tools.

TEXT BOOK

1. Imran Bashir, *Mastering Blockchain: Distributed Ledger Technology, Decentralization and Smart Contracts Explained*, Second Edition, Packt Publishing, 2018.

REFERENCES

- 1. ArshdeepBahga, Vijay Madisetti, *Blockchain Applications: A Hands On Approach*, VPT, 2017.
- 2. Andreas Antonopoulos, Satoshi Nakamoto, Mastering Bitcoin, OReilly, 2014.
- 3. Roger Wattenhofer, *The Science of the Blockchain*, CreateSpace Independent Publishing, 2016.
- 4. A. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, *Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction*, Princeton University Press, 2016.
- 5. Alex Leverington, *Ethereum Programming*, Packt Publishing, 2017.

Page 125 of 147

III B. Tech- II Sem.

L	T	P	С
3	-	_	3

(20CS1111) BIG DATA ANALYTICS

(Professional Elective Course-II)

COURSE OBJECTIVES

The objectives of this course:

- 1. Understand the Big Data Platform and its Use cases
- 2. Provide an over view of Apache Hadoop
- 3. Provide HDFS Concepts and Interfacing with HDFS
- 4. Understand Map Reduce Jobs
- 5. Provide hands on Hodoop EcoSystem

COURSE OUTCOMES (COs)

On successful completion of course, the students can able to:

- 1. Understanding the concepts of BigData and Hadoop along with their applications
- 2. Describe the access and process of data on Distributed File System
- 3. Illustrate the Map-reduce programming in Hadoop framework
- 4. Develop BigData Solutions using Hadoop Eco System
- 5. Analyze the Big Data using HIVE and Hbase to efficiently store and process Big Data to generate analytics
- 6. Understand the usage of BigSQL

UNIT-I

INTRODUCTION TO BIG DATA AND HADOOP

Types of Digital Data, Introduction to Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, Analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM BigData Strategy, Introduction to Infosphere Big Insights and Big Sheets.

UNIT-II

HDFS (Hadoop Distributed File System)

The Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file system interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop archives, Hadoop I/O: Compression, Serialization, Avroand File-Based Data structures.

UNIT - III

MAP REDUCE

Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and Sort, Task Execution, Map Reduce Types and Formats, MapReduce Features.

UNIT-IV

HADOOP ECO SYSTEM

Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, PigLatin, User Defined Functions, Data Processing operators.

UNITV

HIVE: Hive Shell, Hive Services, Hive Metastore, Comparison with Traditional Databases, Hive QL, Tables, Querying Data and User Defined Functions.

Hbase: HBasics, Concepts, Clients, Example, Hbase Versus RDBMS.

BigSQL: Introduction

TEXTBOOKS

- 1. Tom White, Hadoop: The Definitive Guide, Third Editon, O'reily Media, 2012.
- 2. Seema Acharya, Subhasini Chellappan, BigData Analytics, Wiley 2015.

REFERENCES

- 1. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 2. Jay Liebowitz, *BigData and Business Analytics* Auerbach Publications, CRC press (2013)
- 3. Anand Rajaraman and Jefrey David Ulman, *Mining of Massive Datasets*, Cambridge University Press, 2012.
- 4. Bill Franks, *Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics*, John Wiley& sons, 2012.
- 5. Michael Mineli, Michele Chambers, Ambiga Dhiraj, *BigData, BigAnalytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses*, Wiley Publications, 2013
- 6. Arvind Sathi, *BigData Analytics: Disruptive Technologies for Changing the Game*, MC Press, 2012
- 7. Paul Zikopoulos, Dirk DeRoos, Krishnan Parasuraman, Thomas Deutsch, James Giles, David Corigan, *Harness the Power of Big Data The IBM Big Data Platform*, Tata McGraw Hill Publications, 2012.

Page 127 of 147

III B.Tech-II Sem

L	T	P	C
3	-	_	3

(20CE0147) FUNDAMENTALS OF URBAN PLANNING (OPEN ELECTIVE-II)

(Common to all branches)

COURSE OBJECTIVES

The objectives of this course

- 1. To understand the concept of balanced town by ensuring that new and existing facilities are complimentary to each other
- 2. To provide sustainable buildings by considering the environmental, social and economic conditions
- 3. To create awareness about the traffic management within the town

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to

- 1. Recognize issues related to town planning and discuss the objectives, necessity and stages of town planning
- 2. Summarize importance of zoning, can classify various town planning practices and can conduct surveys for town planning
- 3. Classify the residential building, list the agencies involved in improving house and review the problems associated with residential housing
- 4. Discuss the issues associated with slums and recognize the methods to improve condition of slums
- 5. Interpret norms laid down for public and industrial building and can summarize building bye-laws
- 6. List and discuss various urban roads and the concepts of traffic management in a town

UNIT-I

Introduction to Town Planning: Objects of town planning - Necessity of town planning - Principles of town planning - Stages of Town Planning - Origin and growth of towns - Development of towns - Modern town planning in India - Socio - Economic aspects of town planning - Selection of site for an ideal town - Cost of town planning.

UNIT-II

Surveys & Planning: Various types of surveys to be conducted for town planning project-Data to be collected in different types of town planning survey - Types of planning - A brief note on urban, rural and regional planning.

R20 B.Tech-CAD

Zoning: Definition - Objects and principles of zoning - Advantages of zoning - Special Economic Zone (SEZ) - Maps for zoning.

UNIT-III

Housing: Classification of residential building as per HUDCO norms – Low Cost Housing - Housing policy - Different types of housing agencies involved in housing - Investment in Housing - Housing Problems in India.

Slums: Causes-growth-Characteristics-Effects-Slum clearance and re-housing-Prevention of slum formation - Financial assistance for slum clearance.

UNIT-IV

Public Buildings & Industries: Classification-Location-Design Principles of public building - Grouping of public buildings - Effects of Industries on towns and cities - Classification of industries - Requirements of an industry - Regulation of their location.

Building Bye-Laws: Objectives of bye-laws - Importance of bye-laws - Function of local authority - Responsibility of owner - Applicability of bye-laws - Principles underlying building bye-laws.

UNIT-V

Urban Roads: Objectives – Requirements - Classification - Types of street systems - Through and bypass roads - Outer and inner ring roads - Expressways - Freeways.

Traffic Management: Objectives - Traffic surveys - Traffic congestion - Traffic control - Parking - Road accidents - Traffic capacity of roads - Road intersections - Traffic islands - Roundabouts - Traffic signals - Road signs - Road markings - Street lighting in a town.

TEXTBOOKS

- 1. Rangwala, *Town Planning*, Charotar Publishing, 30th edition, 2018
- 2. G K Hiraskar, *Fundamentals of Town Planning*, Dhanpat Rai Publications, New Delhi, 17th edition, 2018

REFERENCES

- 1. Abirbandyopadhyay, Textbook of Town Planning, Books & Allied (P) Ltd, 2000
- 2. Peter Hall and Mark Tewdwr-Jones, *Urban and Regional Planning*, Routledge Publications, 5th edition, 2010
- 3. Catanese AJ, *Urban Planning*, McGraw Hill Publications, 2nd edition, 2014

Page 129 of 147

III B.Tech-II Sem

L	T	P	С
3	•	•	3

(20EE0235) INDUSTRIAL INSTRUMENTATION (OPEN ELECTIVE-II)

(Common to all branches)

COURSE OBJECTIVES

The objectives of this course are:

- 1. To analyse the Common errors that occur in measurement systems, and their classification.
- 2. To understand the characteristics of signals, their representation, and signal modulation techniques.
- 3. To learn the Methods of Data Transmission, Telemetry, and Data acquisition.
- 4. To study working principles of different Signal Analyzers and Digital meters.
- 5. To learn about several types of transducers and their use for measurement of non-electrical quantities.

COURSE OUTCOMES: (COs)

On successful completion of this course, the student will be able to

- 1. Identify and explain the types of errors occurring in measurement systems.
- 2. Differentiate among the types of data transmission and modulation techniques.
- 3. Apply digital techniques to measure voltage, frequency and speed.
- 4. Analyse the working principles of different Signal Analyzers and Digital meters.
- 5. *Understand the operation of several types of transducers.*
- 6. Choose suitable Transducers for the measurement of non-electrical quantities.

UNIT-I

Characteristics of Signals and their representation: Measuring Systems, Performance Characteristics, Static Characteristics, Dynamic Characteristics; Errors in Measurement Gross Errors, Systematic Errors, Statistical Analysis of Random Errors. Signals and their Representation: Standard Test, Periodic, Aperiodic, Modulated Signal, Sampled Data, Pulse Modulation and Pulse Code Modulation.

UNIT-II

Data Transmission, Telemetry and DAS: Methods of Data Transmission—General Telemetry System .Frequency Modulation (FM), Pulse Modulation (PM), Pulse Amplitude Modulation (PAM), Pulse Code Modulation (PCM) Telemetry. Comparison of FM, PM, PAM and PCM. Analog and Digital Data Acquisition Systems —Components of Analog DAS—Types of Multiplexing Systems: Time Division and Frequency Division Multiplexing — Digital DAS—Block Diagram—Modern Digital DAS (Block Diagram)

UNIT-III

Signal Analyzers, Digital Meters: Wave Analyzers- Frequency Selective Analyzers, Heterodyne, Application of Wave Analyzers- Harmonic Analyzers, Total Harmonic Distortion, Spectrum Analyzers, Basic Spectrum Analyzers, Spectral Displays, Vector Impedance Meter, QMeter. Peak Reading and RMS Voltmeters, Digital Voltmeters-Successive Approximation, Ramp and Integrating Type- Digital Frequency Meter- Digital Multimeter- Digital Tachometer

UNIT-IV

Transducers: Definition of Transducers, Classification of Transducers, Advantages of Electrical Transducers, Characteristics and Choice of Transducers; Principle of Operation of Resistive, Inductive, Capacitive Transducers, LVDT, Strain Gauge and its Principle of Operation, Gauge Factor, Thermistors, Thermocouples, Synchros, Piezoelectric Transducers, Photovoltaic, Photo Conductive Cells, Photodiodes.

UNIT-V

Measurement of Non-Electrical Quantities: Measurement of strain, Gauge Sensitivity, Measurement of Displacement, Velocity, Angular Velocity, Acceleration, Force, Torque, Temperature, Pressure, Flow, Liquid level.

TEXTBOOKS

- 1. A.K. Sawhney, A course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai & Co., 2012.
- 2. D.V.S. Murty, *Transducers and Instrumentation*, Prentice Hall of India, 2nd Edition, 2004.

REFERENCES

- 1. A. Dhelfrick and W.D. Cooper *Modern Electronic Instrumentation and Measurement technique*, Pearson/PrenticeHallofIndia.,1990.
- 2. H.S. Kalsi, Electronic Instrumentation, Tata McGraw-Hill Edition, 2010.
- 3. T.R. Padmanabhan, *Industrial Instrumentation Principles and Design*, Springer

Page 131 of 147

III B.Tech.-II Sem.

L	T	P	C
3	-		3

(20ME0354) GENERAL MECHANICAL ENGINEERING (OPEN ELECTIVE-II)

(Common to all branches)

COURSE OBJECTIVES

Objective of this course is to

- 1. Impart knowledge on Selection of Engineering materials and Mechanical Handling Equipment.
- 2. Understand about Automation, CAD, CAM and CIM.
- 3. Know the various Industrial Robot applications.
- 4. Learn about advanced manufacturing systems like NC, CNC and DNC system.
- 5. Study the construction details of the Automobile systems like engines.
- 6. Learn about Refrigeration and Airconditioning systems.

COURSE OUTCOMES: (COs)

At the end of the course, the student will be able to

- 1. List the types of Engineering materials and Manufacturing Processes.
- 2. Apply Automation, CAD, CAM and CIM in the manufacturing.
- 3. Explicate the various Industrial Robot applications.
- 4. Classify various Machining processes like NC, CNS and DNC system and determine the best suitable process to machine a component.
- 5. Recognize the different parts of the automobile system and know the importance of IC Engines in automobiles.
- 6. Distinguish various types of Refrigeration and Airconditioning systems.

UNIT-I

Material and selection, Mechanical Handling Equipment-belts, conveyors, hosty, power transmission

UNIT-II

CAD/CAM: Role of computers in manufacturing-CAD, Design process—CAM-CIM, Scope of CIM - Advantages - Benefits.

Introduction to Automation: Automation, Need-Types-Basic Elements-Strategies and Levels of Automation.

UNIT-III

R20

Introduction to Industrial Robotics: Classification of Robot Configurations, functional line diagram - Principle components - Degrees of freedom – Joints - Advantages, Applications.

Machine Tools: Conventional Machine Tools, Types - Traditional Vs NC machining – Advanced Machine Tools, Classifications - NC, CNC and DNC systems – Advantages, Disadvantages.

UNIT-IV

I.C. Engines - Definition of Engine and Heat Engine, I.C Engine Classification – Parts of an IC Engine, Working of Two Stroke and Four Stroke Engines.

Automobile Engineering: Layout of Automobile, Types, Components –Vehicle chassis, frame and body construction.

UNIT-V

Refrigeration: Introduction to Refrigeration- Classifications of Refrigeration systems-Vapour compression and Vapour absorption systems.

Air conditioning: Introduction to Air conditioning - Classifications of Air conditioning systems-window air conditioning system, split conditioning system, Central air conditioning system.

TEXTBOOKS

- 1. Mikel P. Groover Automation, Production systems and Computer Integrated Manufacturing Systems, Pearson Higher Education, Inc., 3rd Edition, 2014.
- 2. R. K. Rajput, *Engineering Materials and Metallurgy*, S. Chand Publishers, 3rd Edition, 2008.
- 3. C.P. Arora & Domkundwar, *Refrigeration and Airconditioning*, McGraw Hill, 3rdEdition, 2010.

REFERENCES

- 1. Kirpal Singh, *Automobile Engineering*, Vol.1 & Vol.2, Standard Publishers Distributors, 13th Edition, 2013
- 2. R.K. Rajput, *Thermal Engineering*, Laxmi Publications, 6th Edition, NewDelhi, 2010.
- 3. R.K.Jain, *Production Technology*, Khanna Publishers, 17th edition, 2012

Page 133 of 147

III B.Tech.-II Sem.

L	Т	P	C
3	-	•	3

(20EC0452) ELEMENTS OF EMBEDDED SYSTEMS (OPEN ELECTIVE-II)

(Common to all branches)

COURSE OBJECTIVES

The objectives of this course:

- 1. Able to understand the fundamental concepts of embedded systems.
- 2. Able to learn the core of embedded systems.
- 3. Able to learn to program the open source electronics.
- 4. Able to understand the principles of Internet of Things (IoT).
- 5. Able to understand the concepts of Internet of Things (IoT).

COURSE OUTCOMES: (COs)

On successful completion of this course, students will be able to

- 1. Differentiate between general computing system and the embedded system, also recognize the classification of embedded systems.
- 2. Enumerate and describe the components of an embedded system.
- 3. Learn about open source electronics platform.
- 4. Program an embedded system by interfacing sensors & actuators.
- 5. Identify the basic building blocks of Internet of Things and characteristics.
- 6. Implement their own ideas in various application are as of Embedded systems and IoT.

UNIT-I

Introduction to Embedded Systems: Definition –Embedded systems vs General computing systems – History –Classification – Purpose - Major application areas – Characteristics – Architectureofembeddedsystem–CPU,RAM&ROM,timers,clocks,addressbus&databus– overview of design process of embedded systems – programming languages and tools for embedded design.

UNIT-II

Typical Embedded System: Core of the embedded system – RISC vs CISC design philosophy– Memory – Harvard and Von-Neuman architecture–sensors and actuators– Other system components – reset, brownout protection, oscillator, RTC, Watch dog timer. Embedded firmware.

R20 B.Tech-CAD

UNIT-III

Communication: Communication Interfaces – Onboard (I2C, SPI, UART, 1-wire interface, parallel interface), External (RS-232 & RS-485, USB, IEEE 1394, IrDA, Bluetooth, Wi-Fi, ZigBee, GPRS.

UNIT-IV

Designing of Embedded Systems with Arduino Microcontrollers: Introduction to Arduino platform— Overview of Arduino UNO board—ATMega328/P Block diagram—Pin functions—Introduction to Arduino programming —Interfacing & programming sensors —Interfacing & programming actuators Interfacing & programming serial communication devices.

UNIT-V

Introduction to IOT: Introduction to Internet of Things – reference architecture of IoT–Internet principles – IP addresses, MAC addresses, TCP and UDP ports– Application layer protocols – Data protocols– MQTT, XMPP, CoAP – challenges of IoT, Case studies demonstrating IoT – Home automation, cities, Environment, Agriculture.

TEXTBOOKS

- 1. Shibu KV, *Introduction to Embedded systems*, Tata McGraw Hill Education, 1stEdition, 2009.
- 2. RajKamal, Embedded systems, Tata McGraw-Hill Education, 2nd Edition, 2011.
- 3. Arshdeep Bahga, Vijay Madisetti, *Internet of Things: A Hands-On Approach*, Universities Press / Orient Black Swan Pvt. Ltd, 1st Edition, 2015.

REFERENCE

1. Adrian McEwen & Hakim Cassimally, *Designing of Internet of Things*, John Wiley and sons Ltd, 1st Edition, 2014.

Page 135 of 147

III B.Tech - II Sem.

L	T	P	C
3	•	_	3

(20HS0814) INTELLECTUAL PROPERTY RIGHTS (OPEN ELECTIVE-II)

COURSE OBJECTIVES

The objectives of this course:

- 1. To provide an understanding of the concept and significance of intellectual property rights
- 2. To understand the concept of trademarks, copyrights, patents and the need for their protection
- 3. To comprehend the concept of competition, unfair competition and the latest developments in the laws pertaining to intellectual property rights

COURSE OUTCOMES: (COs)

On successful completion of this course, students will be able to

- 1. Become aware of intellectual property rights, concepts, treaties, agencies and international organizations involved in sanctioning IP rights
- 2. Identify different types of intellectual properties, ownership rights and the scope of the protection
- 3. Get an adequate knowledge on patents, trademarks, copyrights and to get property rights for their intellectual work
- 4. Able to identify, apply, and assess ownership rights, registration processes for IP rights
- 5. To discern the approaches for intellectual property management and intellectual property audits
- 6. Demonstrate knowledge and understanding on unfair competition and latest developments in IP rights at international level

UNIT-I

INTRODUCTION TO INTELLECTUAL PROPERTY: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT-II

TRADE MARKS: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

R20 B.Tech-CAD

UNIT-III

LAW OF COPY RIGHTS: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

LAW OF PATENTS: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT-IV

TRADE SECRETS: Trade secrete law, determination of trade secretes status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

UNFAIR COMPETITION: Misappropriation right of publicity, False advertising.

UNIT-V

NEW DEVELOPMENT OF INTELLECTUAL PROPERTY: New developments in trademark law; copyright law, patent law, intellectual property audits. International overview on intellectual property, international - trade mark law, copyright law, international patent law, international development in trade secrets law.

TEXTBOOKS

- 1. Deborah, E. Bouchoux, Intellectual property right, cengage learning
- 2. Nityananda KV, *Intellectual property rights: Protection and Management*. India, Cengage Learning India Private Limited.

REFERENCES

- 1. Prabuddhaganguli, *Intellectual propertyright Unleashing the knowledge economy*, Tata McGraw Hill Publishing Company Ltd.
- 2. Ahuja VK, Law relating to Intellectual Property rights India IN-LexisNexis.
- 3. Neeraj P & Khushdeep D, *Intellectual Property Rights*, India. PHI learning pvt limited.

Page 137 of 147

III B.Tech- II Sem.

L	T	P	С
	-	3	1.5

(20CS1105) FUNDAMENTALS OF MACHINE LEARNING LAB

COURSE OBJECTIVES

The objectives of this course:

- 1. Make use of Datasets in implementing the machine learning algorithms
- 2. Implement them a chine learning concepts and algorithms in any suitable language of choice.

COURSE OUTCOMES (COs)

On successful completion of the course, the students will be able to

- 1. Understand the implementation procedures for the machine learning algorithms.
- 2. Design Java/Python programs for various Learning algorithms.
- 3. Apply appropriate datasets to the Machine Learning algorithms.
- 4. Identify Machine Learning algorithms to solve real world problems.
- 5. Write Machine Learning algorithms to solve real world problems.
- 6. Implement different machine learning algorithms

LIST OF EXPERIMENTS:

- 1. Write a program to demonstrate the working of the decision tree algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 2. Write a program for implementing the Back propagation algorithm and test the same using appropriate datasets.
- 3. Write a program for implementing the classification using Multilayer perceptron.
- 4. Write a program to implement the naïve Bayesian classifier for a sample training dataset stored as a .CSV file. Compute the accuracy of the classifier, considering few test datasets.
- 5. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your dataset.
- 6. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease DataSet. You can use Java/Python ML library classes/API.
- 7. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same datasetforclusteringusingk-Meansalgorithm.Comparetheresultsofthesetwoalgorithms and comment on the quality of clustering. You can add Java/Python ML library classes / API in the program.

- 8. Write a program to implement Principle Component Analysis for Dimensionality Reduction.
- 9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris dataset. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit datapoints. Select appropriate data set for your experiment and draw graphs.

TEXTBOOK

1. Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Second Edition, 2010

REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. *Barto: Reinforcement Learning: An Introduction*. MIT Press
- 3. Jiawei Han and Micheline Kamber, *Data Mining Concepts and Techniques*, Third Edition, Elsevier, 2012.

Page 139 of 147

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

III B. Tech - II Sem.

L	T	P	C
-	•	3	1.5

(20CS1108) R PROGRAMMING LAB

COURSE OBJECTIVES

The objectives of this course:

- 1. Understand the fundamentals of 'R' programming
- 2. Learn how to carry out a range of commonly used statistical methods including analysis of variance and linear regression.
- 3. Explore data-sets to create testable hypotheses and identify appropriate statistical tests.

COURSE OUTCOMES (COs)

On successful completion of this course, student will be able to:

- 1. Implement R Analytics to create Business Insights
- 2. Analyze the data and results using R.
- 3. Apply analytical methods and produce presentation quality graphics.
- 4. Explore data-sets to create testable hypotheses.
- 5. Perform appropriate statistical tests using R.
- 6. Create and edit visualizations with R.
- 1. a) R Multiplication Table
 - b) R Program to Check Prime Number
- 2. a) R Program to check Armstrong Number
 - b) R Program to Print the Fibonacci Sequence
- 3. a) R Program to Check for Leap Year
 - b) Check if a Number is Odd or Even in R Programming
- 4. a) R Program to Check if a Number is Positive, Negative or Zero
 - b) R Program to Find the Sum of Natural Numbers
- 5. a) Convert Decimal into Binary using Recursion in R
 - b) R program to Find the Factorial of a Number Using Recursion
- 6. a) R Program to Find the Factors of a Number
 - b) Fibonacci Sequence Using Recursion in R
- 7. a) R Program to Find H.C.F. or G.C.D.
 - b) R Program to Find L.C.M.
- 8. R Program to Make a Simple Calculator
- 9. a) Creating Vectors and sequences numbers
 - b) Manipulating data frames and lists.

- 10. a) Writing functions in R. using If/else statements.
 - b) Write a Program on For/while loops
- 11. a) Write a Program on Using apply() to iterate over data.
 - b) Write a Program on Using with() to specify environment.
- 12. a) Multivariate statistical summaries using plyr
 - b) Program using ggplot2 graphics
- 13. a) Write a Program on QQ plots
 - b) Write a Program on Interpreting categorical variables in regression

TEXT BOOK

1. Dr. Mark Gardener, *Beginning R the statistical programming language*, Wiley Publications, 2015.

REFERENCES

- 1. Grolemund & Garrett, Hands-On Programming with R Paperback, SPD,2014
- 2. Michael J. Crawley, The R Book WILEY, 2012.

III B.Tech.-II Sem.

L	T	P	C
-	-	3	1.5

(20CS0525) DESIGN AND ANALYSIS OF ALGORITHMS LAB

COURSE OBJECTIVES

The objectives of this course

- 1. Analyze the asymptotic performance of algorithms.
- 2. Write rigorous correctness proofs for algorithms.
- 3. Demonstrate a familiarity with major algorithms and data structures.
- 4. Apply important algorithmic design paradigms and methods of analysis.
- 5. Synthesize efficient algorithms in common engineering design situations.

COURSE OUTCOMES (COs)

On successful completion of this course, the student will be able to:

- 1. Understand the techniques of proof by contradiction, mathematical induction and recurrence relation, and apply them to prove the correctness and to analyze the running time of algorithms.
- 2. Design new algorithms, prove them correct, and analyze their asymptotic and absolute runtime and memory demands.
- 3. Interpret an algorithm to solve the problem (create) and prove that the algorithm solves the problem correctly (validate).
- 4. Relate the mathematical criterion for deciding whether an algorithm is efficient, and know many practically important problems that do not admit any efficient algorithms.
- 5. Infer the basic techniques for designing algorithms, including the techniques of recursion, divide-and-conquer, and greedy.
- 6. Analyze NP-Completeness, NP-complete problems and synthesize efficient algorithms in common engineering design situations.

LIST OF EXPERIMENTS

- 1. To obtain the Topological ordering of vertices in a given digraph.
- 2. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements.
- 3. Sort a given set of elements using the Merges ort method and determine the time required to sort the elements.
- 4. Check whether a given graph is connected or not using DFS method.
- 5. Print all the nodes reachable from a given starting node in a directed graph using BFS method
- 6. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.

- 7. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. And Implement 0/1 Knapsack problem using Dynamic Programming.
- 8. Write a program to implement Travelling Sales Person problem using Dynamic programming.
- 9. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
- 10. Design and implement the presence of Hamiltonian Cycleinan undirected Graph Gofn vertices.

TEXTBOOKS

- 1. Ellis Horowitz, S. Satraj Sahniand Rajasekharam, *Fundamentals of Computer Algorithms*, Galgotia Publications Pvt. Ltd., 4th Edition, 1998.
- 2. Parag Himanshu Dave, Himanshu Bhalchandra Dave, *Design and Analysis Algorithms*, Pearson Education India, 2007.

REFERENCES

- 1. Anany Levitin, *Introduction to the Design and Analysis of Algorithms*, Third Edition, Pearson Education, 2012.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivestand Clifford Stein,
- 3. Alfred V. Aho, John E. Hopcroftand Jeffrey D. Ullman, *Data Structures and Algorithms*, Pearson Education.

Page 143 of 147

III B. Tech-II Sem.

L	T	P	С
1	-	2	2

(20HS0859) ENGLISH FOR CORPORATE COMMUNICATION SKILLS LAB (Skill advanced course/soft skill course)

COURSE OBJECTIVES

The objectives of this course is to

- 1. To improve the students' fluency in English, through aw ell-developed vocabulary
- 2. To enable them listening spoken English at normal conversational speed by English speakers
- 3. To respond appropriately in different social-cultural and professional contexts
- 4. To develop drafting skills among the students.
- 5. To develop Inter-personal and Intra-personal Skills

COURSE OUTCOMES: (COs)

On successful completion of the course, the students will be able to

- 1. Use fluency in English for all kinds of professional communication
- 2. Enhancing job required skills for getting success in their professions
- 3. Improving Effective Speaking Abilities for their business or professional correspondence
- 4. Prepare effective interview techniques to get job in the present scenario
- 5. Using the appropriate skills in all kinds of professional activities
- 6. Use effective communicative approaches by preparing job application, report and other kinds of spoken and written correspondences.

UNIT I - COMMUNICATIVE COMPETENCY

- 1. Functional English
- 2. Reading Comprehension
- 3. Vocabulary for competitive purpose
- 4. Spotting Errors

UNIT II - TECHNICAL WRITING

- 5. Cover Letter
- 6. Curriculum vitae
- 7. Report writing

UNIT III - PRESENTATIONAL SKILLS

- 8. Impromptu Speech
- 9. Oral presentation
- 10. Powerpoint presentation
- 11. Poster presentation

UNIT IV - CORPORATE SKILLS

- 12. Problem Solving
- 13. Team Work
- 14. Leadership Skills

UNIT V - GETTINGREADYFORJOB

- 15. Group Discussion
- 16. Interview skills

Minimum requirements for English for Corporate Communication Skills Lab

- 1. Computer Assisted Language Learning (CALL) Lab: The Computer Assisted Language Lab for 60 Students with 60 systems one Master Console, LAN facility and English Language Software for self-study by learners.
- 2. English for Corporate Communication Skills Lab with movable chairs and audio visual aids with a P.A. system, Projector, a Digital stereo audio & video system and Camcorder etc.

System Requirement (Hardware component):

Computer network, LAN with minimum 60 multimedia systems with the following

Specifications

- i) a) Intel(R)core(TM)i3
 - b) Speed3.10GHZ
 - c) RAM-4GB
 - d) HardDisk-320GB
- ii) Headphones with High quality

Software

Walden InfoTech Software

REFERENCES

- 1. Rizvi, Effective Tech Communication, Tata McGraw-Hill Education, 2007.
- 2. Sanjay Kumar & Pushpalatha, Communication skills, Oxford University Press, 2012.
- 3. 'Writing Tutor. Advanced English Learners' Dictionary, 9th Edition, Oxford University Press, 2015.
- 4. Anjana Agarwal, *Powerful Vocabulary Builder*, New Age International Publishers, 2011.
- 5. Miles Craven, *Listening Extra*, Cambridge University Press, 2008.

III B.Tech -II Sem.

L	T	P	C
2	-	-	_

(20HS0801) ENVIRONMENTAL SCIENCE (Non-Credit Course)

COURSE OBJECTIVES

The Objectives of this Course:

- 1. Identify environmental problems arising due to engineering and technological activities and the science behind those problems.
- 2. To identify the importance of interlinking of food chains.
- 3. Learn about various attributes of pollution management and waste management practices.

COURSE OUTCOMES (COs)

On successful completion of the course students will be able to

- 1. Recognize the physical, chemical and biological components of the earth's systems and show how they function.
- 2. Characterize and analyze human impacts on the environment.
- 3. Integrate facts, concepts and methods from multiple disciplines and apply to environmental Problems.
- 4. Create informed opinions about how to interact with the environment on both a personal and a social level.
- 5. Perform independent research on human interactions with the environment.
- 6. Recognize the ecological basis for regional and global environmental issues

UNIT – I

INTRODUCTION:

Definition, Scope and Importance of environmental science, Need for Public Awareness

NATURAL RESOURCES:

Forest resources: Use and over-exploitation, deforestation, Mining, dams and their effects on forests and tribal people.

Water resources: Use and over utilization of surface and ground water. Floods, drought, conflicts over water, dams benefits and problems. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral

Energy resources: Renewable and Non- Renewable sources of energy. Solar energy, Hydro electrical energy, Wind energy, Nuclear energy.

UNIT-II

ECOSYSTEMS:

Concept of an ecosystem, structure and function of an ecosystem. Producers, Consumers and Decomposers. Biogeochemical cycles, Ecological succession, energy flow in an ecosystem, Food chains, food webs and ecological pyramids. Types of ecosystems (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem.

UNIT-III

BIODIVERSITYANDITSCONSERVATION:

Introduction, Definition, genetic, species and ecosystem diversity, Bio-geographical classification of India, India as a Mega diversity Nation, Hot spots of biodiversity, Value of biodiversity, Threats to biodiversity, Endemic, Endangered and Extinct species of India, In-Situ and Ex-situ conservation of biodiversity.

UNIT-IV

ENVIRONMENTAL POLLUTION AND GLOBAL ENVIRONMENTAL ISSUES:

Natural Disasters: Droughts, Floods, Cyclone, Land slides, Earthquake.

Pollution episodes: Air pollution, Water pollution, Land pollution, Noise pollution, Automobile, Nuclear pollution. Global warming, Acid rain, Ozone layer depletion and controlling measures. Global Environmental Issues: Population Growth, Urbanizations, Land Management, Water and Waste Water Management. Climate change and impacts on human environment.

Solid Waste Management: Causes, effects and control measures of Municipal solid wastes. E-waste and management, Role of an individual in prevention of pollution.

UNIT-V

ENVIRONMENTAL LEGISLATIONS, LAWS, POLICIES FOR SUSTAINABLE DEVELOPMENT:

Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water Act. Wildlife protection Act, Forest conservation Act. Municipal Solid Waste management. International conventions/Protocols Earth summit, Kyoto protocol and Montreal Protocol. Unsustainable to sustainable development, Role of NGO's for Sustainable development. Role of IT in Environment, GIS methods for Sustainable development.

Fieldwork – visit to a local area to document environmental assets, river, forest, grassland/hill, mountain and polluted sites (urban/rural/industrial/Agriculture). study simple ecosystems.

TEXTBOOKS

- 1. A.Kaushik and C.P. Kaushik, *Environmental Sciences*, 5th edition, Newage international publishers, 2015.
- 2. M. Anji Reddy, Text Book of Environmental Science and Technology, BS Publications, 2016.

REFERENCES

- 1. Anil Kumar and Arnab Kumar De, *Environmental Studies*, New Age International Publishers, New Delhi, 3rd Edition 2015.
- 2. R.K. Trivedi, *Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards*, Vol. I and II, Enviro Media, 2016.
- 3. Rajagopalan. R, Environmental Studies From Crisisto Cure, Oxford University Press, 2005.

Page 147 of 147